{"title":"树的拉普拉斯特征值1的多重性的上界","authors":"Fenglei Tian , Juan Wang , Wenyao Song","doi":"10.1016/j.laa.2025.06.013","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>T</em> be a tree of order <span><math><mi>n</mi><mo>(</mo><mo>≥</mo><mn>6</mn><mo>)</mo></math></span>. The number of pendant vertices (resp., quasi-pendant vertices) of <em>T</em> is denoted by <span><math><mi>p</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span> (resp., <span><math><mi>q</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span>). Let <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> denote the multiplicity of <em>λ</em> as a Laplacian eigenvalue of <em>T</em>. The multiplicity of 1 as a Laplacian eigenvalue of <em>T</em> has attracted much attention. In this paper, we first prove that<span><span><span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></msub><mo>(</mo><mn>1</mn><mo>)</mo><mo>=</mo><mi>p</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>−</mo><mi>q</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mover><mrow><mi>T</mi></mrow><mo>‾</mo></mover><mo>)</mo></mrow></msub><mo>(</mo><mn>1</mn><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><mover><mrow><mi>T</mi></mrow><mo>‾</mo></mover></math></span> is called the reduced tree of <em>T</em>, obtained from <em>T</em> by deleting some pendant vertices such that <span><math><mi>p</mi><mo>(</mo><mover><mrow><mi>T</mi></mrow><mo>‾</mo></mover><mo>)</mo><mo>=</mo><mi>q</mi><mo>(</mo><mover><mrow><mi>T</mi></mrow><mo>‾</mo></mover><mo>)</mo></math></span>. Further, for each reduced tree <em>T</em> of order <span><math><mi>n</mi><mo>(</mo><mo>≥</mo><mn>6</mn><mo>)</mo></math></span>, we prove that<span><span><span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></msub><mo>(</mo><mn>1</mn><mo>)</mo><mo>≤</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>,</mo></math></span></span></span> and the structure of the extremal trees attaining the upper bound is characterized completely.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"724 ","pages":"Pages 108-119"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upper bound of the multiplicity of Laplacian eigenvalue 1 of trees\",\"authors\":\"Fenglei Tian , Juan Wang , Wenyao Song\",\"doi\":\"10.1016/j.laa.2025.06.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>T</em> be a tree of order <span><math><mi>n</mi><mo>(</mo><mo>≥</mo><mn>6</mn><mo>)</mo></math></span>. The number of pendant vertices (resp., quasi-pendant vertices) of <em>T</em> is denoted by <span><math><mi>p</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span> (resp., <span><math><mi>q</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span>). Let <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> denote the multiplicity of <em>λ</em> as a Laplacian eigenvalue of <em>T</em>. The multiplicity of 1 as a Laplacian eigenvalue of <em>T</em> has attracted much attention. In this paper, we first prove that<span><span><span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></msub><mo>(</mo><mn>1</mn><mo>)</mo><mo>=</mo><mi>p</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>−</mo><mi>q</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mover><mrow><mi>T</mi></mrow><mo>‾</mo></mover><mo>)</mo></mrow></msub><mo>(</mo><mn>1</mn><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><mover><mrow><mi>T</mi></mrow><mo>‾</mo></mover></math></span> is called the reduced tree of <em>T</em>, obtained from <em>T</em> by deleting some pendant vertices such that <span><math><mi>p</mi><mo>(</mo><mover><mrow><mi>T</mi></mrow><mo>‾</mo></mover><mo>)</mo><mo>=</mo><mi>q</mi><mo>(</mo><mover><mrow><mi>T</mi></mrow><mo>‾</mo></mover><mo>)</mo></math></span>. Further, for each reduced tree <em>T</em> of order <span><math><mi>n</mi><mo>(</mo><mo>≥</mo><mn>6</mn><mo>)</mo></math></span>, we prove that<span><span><span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></msub><mo>(</mo><mn>1</mn><mo>)</mo><mo>≤</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>,</mo></math></span></span></span> and the structure of the extremal trees attaining the upper bound is characterized completely.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"724 \",\"pages\":\"Pages 108-119\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525002654\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002654","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Upper bound of the multiplicity of Laplacian eigenvalue 1 of trees
Let T be a tree of order . The number of pendant vertices (resp., quasi-pendant vertices) of T is denoted by (resp., ). Let denote the multiplicity of λ as a Laplacian eigenvalue of T. The multiplicity of 1 as a Laplacian eigenvalue of T has attracted much attention. In this paper, we first prove that where is called the reduced tree of T, obtained from T by deleting some pendant vertices such that . Further, for each reduced tree T of order , we prove that and the structure of the extremal trees attaining the upper bound is characterized completely.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.