Ching-Chien Chen, Robert J. Appleton, Saswat Mishra, Kat Nykiel, Alejandro Strachan
{"title":"发现新的高压阶段-集成高通量DFT模拟,图神经网络和主动学习","authors":"Ching-Chien Chen, Robert J. Appleton, Saswat Mishra, Kat Nykiel, Alejandro Strachan","doi":"10.1038/s41524-025-01682-7","DOIUrl":null,"url":null,"abstract":"<p>Pressure-induced phase transformations in materials are of interest in a range of fields, including geophysics, planetary sciences, and shock physics. In addition, the high-pressure phases can exhibit desirable properties, eliciting interest in materials science. Despite its importance, the process of finding new high-pressure phases, either experimentally or computationally, is time-consuming and often driven by intuition. In this study, we use graph neural networks trained on density functional theory (DFT) equation of state data of 2258 materials and 7255 phases to identify potential phase transitions. The model is used to explore possible phase transitions in 7677 pairs of phases and promising cases are confirmed or denied via DFT calculations. Importantly, the new data is added to the training set, the model is refined, and a new cycle of discovery is started. Within 13 iterations, we discovered 28 new high-pressure stable phases (never synthesized through high-pressure routes nor reported in high-pressure computational works) and rediscovered 18 pressure-induced phase transitions. The results provide new insight and classification of pressure-induced phase transitions in terms of the ambient properties of the phases involved.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"59 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of new high-pressure phases – integrating high-throughput DFT simulations, graph neural networks, and active learning\",\"authors\":\"Ching-Chien Chen, Robert J. Appleton, Saswat Mishra, Kat Nykiel, Alejandro Strachan\",\"doi\":\"10.1038/s41524-025-01682-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pressure-induced phase transformations in materials are of interest in a range of fields, including geophysics, planetary sciences, and shock physics. In addition, the high-pressure phases can exhibit desirable properties, eliciting interest in materials science. Despite its importance, the process of finding new high-pressure phases, either experimentally or computationally, is time-consuming and often driven by intuition. In this study, we use graph neural networks trained on density functional theory (DFT) equation of state data of 2258 materials and 7255 phases to identify potential phase transitions. The model is used to explore possible phase transitions in 7677 pairs of phases and promising cases are confirmed or denied via DFT calculations. Importantly, the new data is added to the training set, the model is refined, and a new cycle of discovery is started. Within 13 iterations, we discovered 28 new high-pressure stable phases (never synthesized through high-pressure routes nor reported in high-pressure computational works) and rediscovered 18 pressure-induced phase transitions. The results provide new insight and classification of pressure-induced phase transitions in terms of the ambient properties of the phases involved.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01682-7\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01682-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Discovery of new high-pressure phases – integrating high-throughput DFT simulations, graph neural networks, and active learning
Pressure-induced phase transformations in materials are of interest in a range of fields, including geophysics, planetary sciences, and shock physics. In addition, the high-pressure phases can exhibit desirable properties, eliciting interest in materials science. Despite its importance, the process of finding new high-pressure phases, either experimentally or computationally, is time-consuming and often driven by intuition. In this study, we use graph neural networks trained on density functional theory (DFT) equation of state data of 2258 materials and 7255 phases to identify potential phase transitions. The model is used to explore possible phase transitions in 7677 pairs of phases and promising cases are confirmed or denied via DFT calculations. Importantly, the new data is added to the training set, the model is refined, and a new cycle of discovery is started. Within 13 iterations, we discovered 28 new high-pressure stable phases (never synthesized through high-pressure routes nor reported in high-pressure computational works) and rediscovered 18 pressure-induced phase transitions. The results provide new insight and classification of pressure-induced phase transitions in terms of the ambient properties of the phases involved.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.