利用卫星海洋学数据估算北印度洋地区二氧化碳分压场的一种新型比值算法

IF 5.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Ibrahim Shaik , Kande Vamsi Krishna , P.V. Nagamani
{"title":"利用卫星海洋学数据估算北印度洋地区二氧化碳分压场的一种新型比值算法","authors":"Ibrahim Shaik ,&nbsp;Kande Vamsi Krishna ,&nbsp;P.V. Nagamani","doi":"10.1016/j.measurement.2025.118212","DOIUrl":null,"url":null,"abstract":"<div><div>Estimating <em>p</em>CO<sub>2</sub> (partial pressure of carbon dioxide) is crucial for comprehending the global carbon cycle. However, conventional methods relying on in-situ measurements face challenges due to their time-consuming and expensive nature. Remote sensing is a promising alternative, offers high-resolution spatiotemporal data across large areas. In the Northern Indian Ocean (NIO) region, governed by the monsoon system, accurate <em>p</em>CO<sub>2</sub> modelling is hindered by improper parameter selection and limited in-situ data availability. To address these challenges, we propose a novel ratio algorithm for estimating <em>p</em>CO<sub>2</sub> fields in the NIO. This approach utilizes ratios derived from in-situ measurements of Sea Surface Temperature (SST), Sea Surface Salinity (SSS), and Chlorophyll-a (Chl-a) concentration. Through analysis of trends and ratios from in-situ datasets, our algorithm establishes a robust framework for <em>p</em>CO<sub>2</sub> estimation. This ratio-based approach offers a feasible alternative for accurate <em>p</em>CO<sub>2</sub> estimation in the NIO, overcoming the limitations of traditional methods and sparse in-situ measurements.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"256 ","pages":"Article 118212"},"PeriodicalIF":5.2000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel ratio algorithm for estimation of pCO2 fields in the Northern Indian ocean region using satellite oceanographic data\",\"authors\":\"Ibrahim Shaik ,&nbsp;Kande Vamsi Krishna ,&nbsp;P.V. Nagamani\",\"doi\":\"10.1016/j.measurement.2025.118212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Estimating <em>p</em>CO<sub>2</sub> (partial pressure of carbon dioxide) is crucial for comprehending the global carbon cycle. However, conventional methods relying on in-situ measurements face challenges due to their time-consuming and expensive nature. Remote sensing is a promising alternative, offers high-resolution spatiotemporal data across large areas. In the Northern Indian Ocean (NIO) region, governed by the monsoon system, accurate <em>p</em>CO<sub>2</sub> modelling is hindered by improper parameter selection and limited in-situ data availability. To address these challenges, we propose a novel ratio algorithm for estimating <em>p</em>CO<sub>2</sub> fields in the NIO. This approach utilizes ratios derived from in-situ measurements of Sea Surface Temperature (SST), Sea Surface Salinity (SSS), and Chlorophyll-a (Chl-a) concentration. Through analysis of trends and ratios from in-situ datasets, our algorithm establishes a robust framework for <em>p</em>CO<sub>2</sub> estimation. This ratio-based approach offers a feasible alternative for accurate <em>p</em>CO<sub>2</sub> estimation in the NIO, overcoming the limitations of traditional methods and sparse in-situ measurements.</div></div>\",\"PeriodicalId\":18349,\"journal\":{\"name\":\"Measurement\",\"volume\":\"256 \",\"pages\":\"Article 118212\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263224125015714\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224125015714","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

估算二氧化碳分压(pCO2)对于理解全球碳循环至关重要。然而,依赖于原位测量的传统方法由于其耗时和昂贵的性质而面临挑战。遥感是一种很有前途的替代方法,可以提供大范围的高分辨率时空数据。在受季风系统支配的北印度洋(NIO)地区,由于参数选择不当和原位数据有限,影响了准确的二氧化碳分压模拟。为了解决这些挑战,我们提出了一种新的比率算法来估计NIO的二氧化碳分压场。该方法利用了由海表温度(SST)、海表盐度(SSS)和叶绿素-a (Chl-a)浓度的原位测量得出的比值。通过分析现场数据集的趋势和比率,我们的算法建立了一个健壮的二氧化碳分压估算框架。这种基于比值的方法克服了传统方法和稀疏原位测量的局限性,为NIO中pCO2的精确估算提供了一种可行的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel ratio algorithm for estimation of pCO2 fields in the Northern Indian ocean region using satellite oceanographic data
Estimating pCO2 (partial pressure of carbon dioxide) is crucial for comprehending the global carbon cycle. However, conventional methods relying on in-situ measurements face challenges due to their time-consuming and expensive nature. Remote sensing is a promising alternative, offers high-resolution spatiotemporal data across large areas. In the Northern Indian Ocean (NIO) region, governed by the monsoon system, accurate pCO2 modelling is hindered by improper parameter selection and limited in-situ data availability. To address these challenges, we propose a novel ratio algorithm for estimating pCO2 fields in the NIO. This approach utilizes ratios derived from in-situ measurements of Sea Surface Temperature (SST), Sea Surface Salinity (SSS), and Chlorophyll-a (Chl-a) concentration. Through analysis of trends and ratios from in-situ datasets, our algorithm establishes a robust framework for pCO2 estimation. This ratio-based approach offers a feasible alternative for accurate pCO2 estimation in the NIO, overcoming the limitations of traditional methods and sparse in-situ measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement
Measurement 工程技术-工程:综合
CiteScore
10.20
自引率
12.50%
发文量
1589
审稿时长
12.1 months
期刊介绍: Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信