Julian Barra, Rajni Chahal, Shubhojit Banerjee, Massimiliano Lupo Pasini, Stephan Irle, Stephen Lam
{"title":"通过生成建模设计熔盐的属性到组成的逆映射","authors":"Julian Barra, Rajni Chahal, Shubhojit Banerjee, Massimiliano Lupo Pasini, Stephan Irle, Stephen Lam","doi":"10.1038/s41524-025-01638-x","DOIUrl":null,"url":null,"abstract":"<p>Generative modeling (GM) has been increasingly used for the inverse design and optimization of materials, yet its application to molten salt mixtures remains unexplored despite how a successful approach to the inverse design of molten salts would contribute to efficiently exploiting their customizability and unlocking their advantages in applications, such as energy production and energy storage. This work presents a workflow for the inverse design of molten salts with targeted density values, addressing the challenge of representing these complex mixtures in GM. A dataset of critically evaluated molten salt densities is used to train a variational autoencoder coupled with a predictive deep neural network, which then can be used to generate new molten salt compositions with desired density values. The effectiveness of the approach is demonstrated by designing mixtures with distinct densities and validating the predicted values using ab initio molecular dynamics simulations.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"40 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse mapping of properties to composition through generative modeling for designing molten salts\",\"authors\":\"Julian Barra, Rajni Chahal, Shubhojit Banerjee, Massimiliano Lupo Pasini, Stephan Irle, Stephen Lam\",\"doi\":\"10.1038/s41524-025-01638-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Generative modeling (GM) has been increasingly used for the inverse design and optimization of materials, yet its application to molten salt mixtures remains unexplored despite how a successful approach to the inverse design of molten salts would contribute to efficiently exploiting their customizability and unlocking their advantages in applications, such as energy production and energy storage. This work presents a workflow for the inverse design of molten salts with targeted density values, addressing the challenge of representing these complex mixtures in GM. A dataset of critically evaluated molten salt densities is used to train a variational autoencoder coupled with a predictive deep neural network, which then can be used to generate new molten salt compositions with desired density values. The effectiveness of the approach is demonstrated by designing mixtures with distinct densities and validating the predicted values using ab initio molecular dynamics simulations.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01638-x\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01638-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Inverse mapping of properties to composition through generative modeling for designing molten salts
Generative modeling (GM) has been increasingly used for the inverse design and optimization of materials, yet its application to molten salt mixtures remains unexplored despite how a successful approach to the inverse design of molten salts would contribute to efficiently exploiting their customizability and unlocking their advantages in applications, such as energy production and energy storage. This work presents a workflow for the inverse design of molten salts with targeted density values, addressing the challenge of representing these complex mixtures in GM. A dataset of critically evaluated molten salt densities is used to train a variational autoencoder coupled with a predictive deep neural network, which then can be used to generate new molten salt compositions with desired density values. The effectiveness of the approach is demonstrated by designing mixtures with distinct densities and validating the predicted values using ab initio molecular dynamics simulations.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.