有限角度计算机断层扫描的多域信息融合扩散模型。

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Genwei Ma, Dimeng Xia, Shusen Zhao
{"title":"有限角度计算机断层扫描的多域信息融合扩散模型。","authors":"Genwei Ma, Dimeng Xia, Shusen Zhao","doi":"10.1177/08953996251339368","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundLimited-angle Computed Tomography imaging suffers from severe artifacts in the reconstructed image due to incomplete projection data. Deep learning methods have been developed currently to address the challenges of robustness and low contrast of the limited-angle CT reconstruction with a relatively effective way.ObjectiveTo improve the low contrast of the current limited-angle CT reconstruction image, enhance the robustness of the reconstruction method and the contrast of the limited-angle image.MethodIn this paper, we proposed a limited-angle CT reconstruction method that combining the Fourier domain reweighting and wavelet domain enhancement, which fused information from different domains, thereby getting high-resolution reconstruction images.ResultsWe verified the feasibility and effectiveness of the proposed solution through experiments, and the reconstruction results are improved compared with the state-of-the-art methods.ConclusionsThe proposed method enhances some features of the original image domain data from different domains, which is beneficial to the reasonable diffusion and restoration of diffuse detail texture features.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"8953996251339368"},"PeriodicalIF":1.7000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-domain information fusion diffusion model (MDIF-DM) for limited-angle computed tomography.\",\"authors\":\"Genwei Ma, Dimeng Xia, Shusen Zhao\",\"doi\":\"10.1177/08953996251339368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BackgroundLimited-angle Computed Tomography imaging suffers from severe artifacts in the reconstructed image due to incomplete projection data. Deep learning methods have been developed currently to address the challenges of robustness and low contrast of the limited-angle CT reconstruction with a relatively effective way.ObjectiveTo improve the low contrast of the current limited-angle CT reconstruction image, enhance the robustness of the reconstruction method and the contrast of the limited-angle image.MethodIn this paper, we proposed a limited-angle CT reconstruction method that combining the Fourier domain reweighting and wavelet domain enhancement, which fused information from different domains, thereby getting high-resolution reconstruction images.ResultsWe verified the feasibility and effectiveness of the proposed solution through experiments, and the reconstruction results are improved compared with the state-of-the-art methods.ConclusionsThe proposed method enhances some features of the original image domain data from different domains, which is beneficial to the reasonable diffusion and restoration of diffuse detail texture features.</p>\",\"PeriodicalId\":49948,\"journal\":{\"name\":\"Journal of X-Ray Science and Technology\",\"volume\":\" \",\"pages\":\"8953996251339368\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of X-Ray Science and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/08953996251339368\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996251339368","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

背景有限角度计算机断层成像由于投影数据不完整,在重建图像中存在严重的伪影。深度学习方法是目前发展起来的一种相对有效的方法,可以解决有限角度CT重建的鲁棒性和对比度低的问题。目的改善当前有限角度CT重建图像对比度低的问题,增强重建方法的鲁棒性和有限角度图像的对比度。方法提出了一种结合傅里叶域重加权和小波域增强的有限角度CT重建方法,融合不同域的信息,得到高分辨率的重建图像。结果通过实验验证了该方法的可行性和有效性,与现有方法相比,重构结果有所改善。结论该方法从不同的域增强了原始图像域数据的某些特征,有利于漫反射细节纹理特征的合理扩散和恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-domain information fusion diffusion model (MDIF-DM) for limited-angle computed tomography.

BackgroundLimited-angle Computed Tomography imaging suffers from severe artifacts in the reconstructed image due to incomplete projection data. Deep learning methods have been developed currently to address the challenges of robustness and low contrast of the limited-angle CT reconstruction with a relatively effective way.ObjectiveTo improve the low contrast of the current limited-angle CT reconstruction image, enhance the robustness of the reconstruction method and the contrast of the limited-angle image.MethodIn this paper, we proposed a limited-angle CT reconstruction method that combining the Fourier domain reweighting and wavelet domain enhancement, which fused information from different domains, thereby getting high-resolution reconstruction images.ResultsWe verified the feasibility and effectiveness of the proposed solution through experiments, and the reconstruction results are improved compared with the state-of-the-art methods.ConclusionsThe proposed method enhances some features of the original image domain data from different domains, which is beneficial to the reasonable diffusion and restoration of diffuse detail texture features.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信