结构化的人与法学硕士交互设计揭示了高等教育内容生成的探索和开发动态。

IF 3.6 1区 心理学 Q1 EDUCATION & EDUCATIONAL RESEARCH
Pablo Flores Romero, Kin Nok Nicholas Fung, Guang Rong, Benjamin Ultan Cowley
{"title":"结构化的人与法学硕士交互设计揭示了高等教育内容生成的探索和开发动态。","authors":"Pablo Flores Romero, Kin Nok Nicholas Fung, Guang Rong, Benjamin Ultan Cowley","doi":"10.1038/s41539-025-00332-3","DOIUrl":null,"url":null,"abstract":"<p><p>Large Language Models (LLMs) present a radically new paradigm for the study of information foraging behavior. We study how LLM technology is used for pedagogical content creation by a sample of 25 participants in a doctoral-level Artificial Intelligence (AI) in Education course, and the role of computational-thinking skills in shaping their foraging behavior. We used editable prompt templates and socially-sourced keywords to structure their prompt-crafting process. This design influenced participants' behaviors towards exploration (to generate novel information landscapes) and exploitation (to dive into specific content). Findings suggest that exploration facilitates navigation of semantically diverse information, especially when influenced by social cues. In contrast, exploitation narrows the focus to using AI-generated content. Participants also completed a Computational Thinking survey: exploratory analyses suggest that trait cooperativity encourages exploitation of AI content, while trait critical thinking moderates reliance on participants' own interests. We discuss implications for future use of LLM-driven educational tools.</p>","PeriodicalId":48503,"journal":{"name":"npj Science of Learning","volume":"10 1","pages":"40"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177052/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structured human-LLM interaction design reveals exploration and exploitation dynamics in higher education content generation.\",\"authors\":\"Pablo Flores Romero, Kin Nok Nicholas Fung, Guang Rong, Benjamin Ultan Cowley\",\"doi\":\"10.1038/s41539-025-00332-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Large Language Models (LLMs) present a radically new paradigm for the study of information foraging behavior. We study how LLM technology is used for pedagogical content creation by a sample of 25 participants in a doctoral-level Artificial Intelligence (AI) in Education course, and the role of computational-thinking skills in shaping their foraging behavior. We used editable prompt templates and socially-sourced keywords to structure their prompt-crafting process. This design influenced participants' behaviors towards exploration (to generate novel information landscapes) and exploitation (to dive into specific content). Findings suggest that exploration facilitates navigation of semantically diverse information, especially when influenced by social cues. In contrast, exploitation narrows the focus to using AI-generated content. Participants also completed a Computational Thinking survey: exploratory analyses suggest that trait cooperativity encourages exploitation of AI content, while trait critical thinking moderates reliance on participants' own interests. We discuss implications for future use of LLM-driven educational tools.</p>\",\"PeriodicalId\":48503,\"journal\":{\"name\":\"npj Science of Learning\",\"volume\":\"10 1\",\"pages\":\"40\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177052/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Science of Learning\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1038/s41539-025-00332-3\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Science of Learning","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1038/s41539-025-00332-3","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(llm)为信息觅食行为的研究提供了一个全新的范式。我们以25名博士级人工智能(AI)教育课程的参与者为样本,研究了法学硕士技术如何用于教学内容的创建,以及计算思维技能在塑造他们的觅食行为中的作用。我们使用可编辑的提示模板和社交来源的关键字来构建提示制作过程。这种设计影响了参与者对探索(产生新的信息景观)和利用(深入研究特定内容)的行为。研究结果表明,探索有助于在语义上多样化的信息中导航,尤其是在受到社会线索的影响时。相比之下,开发将焦点缩小到使用人工智能生成的内容。参与者还完成了一项计算思维调查:探索性分析表明,特质合作鼓励对人工智能内容的利用,而特质批判性思维则缓和了参与者对自己兴趣的依赖。我们讨论了未来使用法学硕士驱动的教育工具的含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structured human-LLM interaction design reveals exploration and exploitation dynamics in higher education content generation.

Large Language Models (LLMs) present a radically new paradigm for the study of information foraging behavior. We study how LLM technology is used for pedagogical content creation by a sample of 25 participants in a doctoral-level Artificial Intelligence (AI) in Education course, and the role of computational-thinking skills in shaping their foraging behavior. We used editable prompt templates and socially-sourced keywords to structure their prompt-crafting process. This design influenced participants' behaviors towards exploration (to generate novel information landscapes) and exploitation (to dive into specific content). Findings suggest that exploration facilitates navigation of semantically diverse information, especially when influenced by social cues. In contrast, exploitation narrows the focus to using AI-generated content. Participants also completed a Computational Thinking survey: exploratory analyses suggest that trait cooperativity encourages exploitation of AI content, while trait critical thinking moderates reliance on participants' own interests. We discuss implications for future use of LLM-driven educational tools.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
7.10%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信