Charl Linssen, Pooja N Babu, Jochen M Eppler, Luca Koll, Bernhard Rumpe, Abigail Morrison
{"title":"一种通用的建模语言和代码生成工具,用于模拟具有高级可塑性规则的峰值神经网络。","authors":"Charl Linssen, Pooja N Babu, Jochen M Eppler, Luca Koll, Bernhard Rumpe, Abigail Morrison","doi":"10.3389/fninf.2025.1544143","DOIUrl":null,"url":null,"abstract":"<p><p>With increasing model complexity, models are typically re-used and evolved rather than starting from scratch. There is also a growing challenge in ensuring that these models can seamlessly work across various simulation backends and hardware platforms. This underscores the need to ensure that models are easily findable, accessible, interoperable, and reusable-adhering to the FAIR principles. NESTML addresses these requirements by providing a domain-specific language for describing neuron and synapse models that covers a wide range of neuroscientific use cases. The language is supported by a code generation toolchain that automatically generates low-level simulation code for a given target platform (for example, C++ code targeting NEST Simulator). Code generation allows an accessible and easy-to-use language syntax to be combined with good runtime simulation performance and scalability. With an intuitive and highly generic language, combined with the generation of efficient, optimized simulation code supporting large-scale simulations, it opens up neuronal network model development and simulation as a research tool to a much wider community. While originally developed in the context of NEST Simulator, NESTML has been extended to target other simulation platforms, such as the SpiNNaker neuromorphic hardware platform. The processing toolchain is written in Python and is lightweight and easily customizable, making it easy to add support for new simulation platforms.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1544143"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12174165/pdf/","citationCount":"0","resultStr":"{\"title\":\"NESTML: a generic modeling language and code generation tool for the simulation of spiking neural networks with advanced plasticity rules.\",\"authors\":\"Charl Linssen, Pooja N Babu, Jochen M Eppler, Luca Koll, Bernhard Rumpe, Abigail Morrison\",\"doi\":\"10.3389/fninf.2025.1544143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With increasing model complexity, models are typically re-used and evolved rather than starting from scratch. There is also a growing challenge in ensuring that these models can seamlessly work across various simulation backends and hardware platforms. This underscores the need to ensure that models are easily findable, accessible, interoperable, and reusable-adhering to the FAIR principles. NESTML addresses these requirements by providing a domain-specific language for describing neuron and synapse models that covers a wide range of neuroscientific use cases. The language is supported by a code generation toolchain that automatically generates low-level simulation code for a given target platform (for example, C++ code targeting NEST Simulator). Code generation allows an accessible and easy-to-use language syntax to be combined with good runtime simulation performance and scalability. With an intuitive and highly generic language, combined with the generation of efficient, optimized simulation code supporting large-scale simulations, it opens up neuronal network model development and simulation as a research tool to a much wider community. While originally developed in the context of NEST Simulator, NESTML has been extended to target other simulation platforms, such as the SpiNNaker neuromorphic hardware platform. The processing toolchain is written in Python and is lightweight and easily customizable, making it easy to add support for new simulation platforms.</p>\",\"PeriodicalId\":12462,\"journal\":{\"name\":\"Frontiers in Neuroinformatics\",\"volume\":\"19 \",\"pages\":\"1544143\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12174165/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neuroinformatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fninf.2025.1544143\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fninf.2025.1544143","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
NESTML: a generic modeling language and code generation tool for the simulation of spiking neural networks with advanced plasticity rules.
With increasing model complexity, models are typically re-used and evolved rather than starting from scratch. There is also a growing challenge in ensuring that these models can seamlessly work across various simulation backends and hardware platforms. This underscores the need to ensure that models are easily findable, accessible, interoperable, and reusable-adhering to the FAIR principles. NESTML addresses these requirements by providing a domain-specific language for describing neuron and synapse models that covers a wide range of neuroscientific use cases. The language is supported by a code generation toolchain that automatically generates low-level simulation code for a given target platform (for example, C++ code targeting NEST Simulator). Code generation allows an accessible and easy-to-use language syntax to be combined with good runtime simulation performance and scalability. With an intuitive and highly generic language, combined with the generation of efficient, optimized simulation code supporting large-scale simulations, it opens up neuronal network model development and simulation as a research tool to a much wider community. While originally developed in the context of NEST Simulator, NESTML has been extended to target other simulation platforms, such as the SpiNNaker neuromorphic hardware platform. The processing toolchain is written in Python and is lightweight and easily customizable, making it easy to add support for new simulation platforms.
期刊介绍:
Frontiers in Neuroinformatics publishes rigorously peer-reviewed research on the development and implementation of numerical/computational models and analytical tools used to share, integrate and analyze experimental data and advance theories of the nervous system functions. Specialty Chief Editors Jan G. Bjaalie at the University of Oslo and Sean L. Hill at the École Polytechnique Fédérale de Lausanne are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neuroscience is being propelled into the information age as the volume of information explodes, demanding organization and synthesis. Novel synthesis approaches are opening up a new dimension for the exploration of the components of brain elements and systems and the vast number of variables that underlie their functions. Neural data is highly heterogeneous with complex inter-relations across multiple levels, driving the need for innovative organizing and synthesizing approaches from genes to cognition, and covering a range of species and disease states.
Frontiers in Neuroinformatics therefore welcomes submissions on existing neuroscience databases, development of data and knowledge bases for all levels of neuroscience, applications and technologies that can facilitate data sharing (interoperability, formats, terminologies, and ontologies), and novel tools for data acquisition, analyses, visualization, and dissemination of nervous system data. Our journal welcomes submissions on new tools (software and hardware) that support brain modeling, and the merging of neuroscience databases with brain models used for simulation and visualization.