评估GPT在消费者食品调查分析中的能力:一种理解食品技术恐惧症和新蛋白质感知的比较方法

IF 4.8 Q1 AGRICULTURE, MULTIDISCIPLINARY
Peihua Ma , Si Chen , Wenfan Su , Jiping Sheng , Xiaoxue Jia , Cheng-I Wei , Yunbo Luo , Jiao Xu , Yan Song , Ling Yong , Tong Ou , Ying Yue
{"title":"评估GPT在消费者食品调查分析中的能力:一种理解食品技术恐惧症和新蛋白质感知的比较方法","authors":"Peihua Ma ,&nbsp;Si Chen ,&nbsp;Wenfan Su ,&nbsp;Jiping Sheng ,&nbsp;Xiaoxue Jia ,&nbsp;Cheng-I Wei ,&nbsp;Yunbo Luo ,&nbsp;Jiao Xu ,&nbsp;Yan Song ,&nbsp;Ling Yong ,&nbsp;Tong Ou ,&nbsp;Ying Yue","doi":"10.1016/j.jafr.2025.102086","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the application of GPT models for automating consumer food survey analysis, focusing on Chinese consumers' acceptance of plant-based foods, cultured meat, insect-based proteins, and microbial proteins. Traditional survey analysis methods face limitations in handling large-scale, open-ended responses, whereas GPT's natural language processing capabilities offer efficient, bias-reduced alternatives. Employing Partial Least Squares Structural Equation Modeling (PLS-SEM), we investigate how food technophobia (FTN) and food values (FV) affect perceived benefits (PB) and perceived risks (PR), ultimately influencing consumer acceptance. Results show that acceptance is highest for plant-based foods and lowest for cultured meat, with PB positively and PR negatively impacting consumer willingness to these foods. Mediation analysis reveals that PR and PB mediate the effects of FTN and FV on acceptance, indicating that attitudes toward food safety, naturalness, and production processes shape consumer choices. The findings underscore the value of using GPT for comprehensive, real-time survey analysis and suggest marketing strategies and policies that emphasize product safety, environmental benefits, and consumer education to enhance acceptance of alternative proteins.</div></div>","PeriodicalId":34393,"journal":{"name":"Journal of Agriculture and Food Research","volume":"22 ","pages":"Article 102086"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing GPT's capabilities in consumer food survey analysis: A comparative approach for understanding food technophobia and novel protein perceptions\",\"authors\":\"Peihua Ma ,&nbsp;Si Chen ,&nbsp;Wenfan Su ,&nbsp;Jiping Sheng ,&nbsp;Xiaoxue Jia ,&nbsp;Cheng-I Wei ,&nbsp;Yunbo Luo ,&nbsp;Jiao Xu ,&nbsp;Yan Song ,&nbsp;Ling Yong ,&nbsp;Tong Ou ,&nbsp;Ying Yue\",\"doi\":\"10.1016/j.jafr.2025.102086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the application of GPT models for automating consumer food survey analysis, focusing on Chinese consumers' acceptance of plant-based foods, cultured meat, insect-based proteins, and microbial proteins. Traditional survey analysis methods face limitations in handling large-scale, open-ended responses, whereas GPT's natural language processing capabilities offer efficient, bias-reduced alternatives. Employing Partial Least Squares Structural Equation Modeling (PLS-SEM), we investigate how food technophobia (FTN) and food values (FV) affect perceived benefits (PB) and perceived risks (PR), ultimately influencing consumer acceptance. Results show that acceptance is highest for plant-based foods and lowest for cultured meat, with PB positively and PR negatively impacting consumer willingness to these foods. Mediation analysis reveals that PR and PB mediate the effects of FTN and FV on acceptance, indicating that attitudes toward food safety, naturalness, and production processes shape consumer choices. The findings underscore the value of using GPT for comprehensive, real-time survey analysis and suggest marketing strategies and policies that emphasize product safety, environmental benefits, and consumer education to enhance acceptance of alternative proteins.</div></div>\",\"PeriodicalId\":34393,\"journal\":{\"name\":\"Journal of Agriculture and Food Research\",\"volume\":\"22 \",\"pages\":\"Article 102086\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agriculture and Food Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666154325004570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agriculture and Food Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666154325004570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了GPT模型在消费者食品调查自动化分析中的应用,重点研究了中国消费者对植物性食品、人造肉、昆虫蛋白和微生物蛋白的接受程度。传统的调查分析方法在处理大规模、开放式的回答时面临局限性,而GPT的自然语言处理能力提供了高效、减少偏见的替代方法。利用偏最小二乘结构方程模型(PLS-SEM),我们研究了食品技术恐惧(FTN)和食品价值(FV)如何影响感知利益(PB)和感知风险(PR),最终影响消费者接受度。结果表明,消费者对植物性食品的接受度最高,对培养肉的接受度最低,PB对这些食品的接受度有积极影响,PR对这些食品的接受度有消极影响。中介分析表明,PR和PB中介了FTN和FV对接受度的影响,表明对食品安全、自然和生产过程的态度影响了消费者的选择。研究结果强调了使用GPT进行全面、实时调查分析的价值,并提出了强调产品安全性、环境效益和消费者教育以提高替代蛋白质接受度的营销策略和政策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing GPT's capabilities in consumer food survey analysis: A comparative approach for understanding food technophobia and novel protein perceptions
This study explores the application of GPT models for automating consumer food survey analysis, focusing on Chinese consumers' acceptance of plant-based foods, cultured meat, insect-based proteins, and microbial proteins. Traditional survey analysis methods face limitations in handling large-scale, open-ended responses, whereas GPT's natural language processing capabilities offer efficient, bias-reduced alternatives. Employing Partial Least Squares Structural Equation Modeling (PLS-SEM), we investigate how food technophobia (FTN) and food values (FV) affect perceived benefits (PB) and perceived risks (PR), ultimately influencing consumer acceptance. Results show that acceptance is highest for plant-based foods and lowest for cultured meat, with PB positively and PR negatively impacting consumer willingness to these foods. Mediation analysis reveals that PR and PB mediate the effects of FTN and FV on acceptance, indicating that attitudes toward food safety, naturalness, and production processes shape consumer choices. The findings underscore the value of using GPT for comprehensive, real-time survey analysis and suggest marketing strategies and policies that emphasize product safety, environmental benefits, and consumer education to enhance acceptance of alternative proteins.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
2.60%
发文量
193
审稿时长
69 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信