通过主动学习揭示扫描隧道显微镜中多尺度结构-性质的相关性

IF 11.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Ganesh Narasimha, Dejia Kong, Paras Regmi, Rongying Jin, Zheng Gai, Rama Vasudevan, Maxim Ziatdinov
{"title":"通过主动学习揭示扫描隧道显微镜中多尺度结构-性质的相关性","authors":"Ganesh Narasimha, Dejia Kong, Paras Regmi, Rongying Jin, Zheng Gai, Rama Vasudevan, Maxim Ziatdinov","doi":"10.1038/s41524-025-01642-1","DOIUrl":null,"url":null,"abstract":"<p>Atomic arrangements and local sub-structures fundamentally influence emergent material functionalities. These structures are conventionally probed using spatially resolved studies and the property correlations are deciphered by a researcher based on sequential explorations, thereby limiting the efficiency and scope. Here we demonstrate a multi-scale Bayesian deep-learning based framework that automatically correlates material structure with its electronic properties using scanning tunneling microscopy (STM) measurements in real-time. Its predictions are used to autonomously direct exploration toward regions of the sample that optimize a given material property. This method is deployed on a low-temperature ultra-high vacuum STM to understand the structure-property relationship in a europium-based semimetal, EuZn<sub>2</sub>As<sub>2</sub>, a promising candidate relevant to magnetism-driven topological phenomena. The framework employs a sparse-sampling approach to efficiently construct the scalar-property space using minimal measurements, about 1–10% of the data required in standard hyperspectral methods. Moreover, we formulate the problem hierarchically across length scales, implementing autonomous workflow to locate mesoscopic and atomic structures that correspond to a target material property. This framework offers the choice to design scalar-property from the spectroscopic data to steer sample exploration. Our findings reveal correlations of the electronic properties unique to surface terminations, local defect density, and point defects.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"13 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncovering multiscale structure-property correlations via active learning in scanning tunneling microscopy\",\"authors\":\"Ganesh Narasimha, Dejia Kong, Paras Regmi, Rongying Jin, Zheng Gai, Rama Vasudevan, Maxim Ziatdinov\",\"doi\":\"10.1038/s41524-025-01642-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Atomic arrangements and local sub-structures fundamentally influence emergent material functionalities. These structures are conventionally probed using spatially resolved studies and the property correlations are deciphered by a researcher based on sequential explorations, thereby limiting the efficiency and scope. Here we demonstrate a multi-scale Bayesian deep-learning based framework that automatically correlates material structure with its electronic properties using scanning tunneling microscopy (STM) measurements in real-time. Its predictions are used to autonomously direct exploration toward regions of the sample that optimize a given material property. This method is deployed on a low-temperature ultra-high vacuum STM to understand the structure-property relationship in a europium-based semimetal, EuZn<sub>2</sub>As<sub>2</sub>, a promising candidate relevant to magnetism-driven topological phenomena. The framework employs a sparse-sampling approach to efficiently construct the scalar-property space using minimal measurements, about 1–10% of the data required in standard hyperspectral methods. Moreover, we formulate the problem hierarchically across length scales, implementing autonomous workflow to locate mesoscopic and atomic structures that correspond to a target material property. This framework offers the choice to design scalar-property from the spectroscopic data to steer sample exploration. Our findings reveal correlations of the electronic properties unique to surface terminations, local defect density, and point defects.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01642-1\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01642-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

原子排列和局部子结构从根本上影响着涌现的物质功能。这些结构通常是使用空间解析研究来探测的,而属性相关性是由研究人员基于顺序探索来破译的,从而限制了效率和范围。在这里,我们展示了一个基于多尺度贝叶斯深度学习的框架,该框架使用扫描隧道显微镜(STM)实时测量自动将材料结构与其电子特性关联起来。它的预测被用来自主地对优化给定材料特性的样品区域进行直接勘探。该方法部署在低温超高真空STM上,以了解铕基半金属EuZn2As2的结构-性能关系,EuZn2As2是与磁性驱动拓扑现象相关的有前途的候选金属。该框架采用稀疏采样方法,使用标准高光谱方法所需数据的1-10%的最小测量值有效地构建标量属性空间。此外,我们在长度尺度上分层制定问题,实现自主工作流来定位与目标材料属性相对应的介观和原子结构。该框架提供了从光谱数据设计标量特性的选择,以指导样品勘探。我们的发现揭示了表面末端,局部缺陷密度和点缺陷特有的电子特性的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Uncovering multiscale structure-property correlations via active learning in scanning tunneling microscopy

Uncovering multiscale structure-property correlations via active learning in scanning tunneling microscopy

Atomic arrangements and local sub-structures fundamentally influence emergent material functionalities. These structures are conventionally probed using spatially resolved studies and the property correlations are deciphered by a researcher based on sequential explorations, thereby limiting the efficiency and scope. Here we demonstrate a multi-scale Bayesian deep-learning based framework that automatically correlates material structure with its electronic properties using scanning tunneling microscopy (STM) measurements in real-time. Its predictions are used to autonomously direct exploration toward regions of the sample that optimize a given material property. This method is deployed on a low-temperature ultra-high vacuum STM to understand the structure-property relationship in a europium-based semimetal, EuZn2As2, a promising candidate relevant to magnetism-driven topological phenomena. The framework employs a sparse-sampling approach to efficiently construct the scalar-property space using minimal measurements, about 1–10% of the data required in standard hyperspectral methods. Moreover, we formulate the problem hierarchically across length scales, implementing autonomous workflow to locate mesoscopic and atomic structures that correspond to a target material property. This framework offers the choice to design scalar-property from the spectroscopic data to steer sample exploration. Our findings reveal correlations of the electronic properties unique to surface terminations, local defect density, and point defects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信