通过信息丰富的毫米波雷达特性和轻量级的空间-光谱-时间网络推进稳健的人类活动识别

IF 5.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Van Ngoc Dang, Ngoc Chau Hoang, Quoc Cuong Nguyen, Minh Thuy Le
{"title":"通过信息丰富的毫米波雷达特性和轻量级的空间-光谱-时间网络推进稳健的人类活动识别","authors":"Van Ngoc Dang,&nbsp;Ngoc Chau Hoang,&nbsp;Quoc Cuong Nguyen,&nbsp;Minh Thuy Le","doi":"10.1016/j.measurement.2025.118056","DOIUrl":null,"url":null,"abstract":"<div><div>Human activity recognition (HAR) is increasingly important in aiding our daily life, with millimeter-wave (mmWave) radar sensors emerging as a promising noninvasive solution thanks to their excellent spatial and velocity resolution. Although existing radar-based systems have shown strong performance, they primarily focus on micro-Doppler signatures while neglecting angle information, which can hinder practical deployment in real-world scenarios. Moreover, current state-of-the-art recognition models using mmWave radar often require substantial computational resources, making integration into resource-constrained devices challenging. This work proposes an efficient radar-based HAR system that leverages angle and spectro-temporal information from micro-Doppler signatures. Our system utilizes a multi-channel micro-Doppler representation corresponding to the number of virtual antenna receivers as input. Then, a lightweight dilated convolutional network, namely SST-DCN, extracts spatial-aware multi-scale spectro-temporal information through time-frequency dilated convolutions. Experimental results on our real-world dataset demonstrate the superiority of our approach compared to conventional features and other state-of-the-art radar-based HAR systems.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"256 ","pages":"Article 118056"},"PeriodicalIF":5.2000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing robust human activity recognition via informative mmWave radar characteristics and a lightweight spatio-spectro-temporal network\",\"authors\":\"Van Ngoc Dang,&nbsp;Ngoc Chau Hoang,&nbsp;Quoc Cuong Nguyen,&nbsp;Minh Thuy Le\",\"doi\":\"10.1016/j.measurement.2025.118056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Human activity recognition (HAR) is increasingly important in aiding our daily life, with millimeter-wave (mmWave) radar sensors emerging as a promising noninvasive solution thanks to their excellent spatial and velocity resolution. Although existing radar-based systems have shown strong performance, they primarily focus on micro-Doppler signatures while neglecting angle information, which can hinder practical deployment in real-world scenarios. Moreover, current state-of-the-art recognition models using mmWave radar often require substantial computational resources, making integration into resource-constrained devices challenging. This work proposes an efficient radar-based HAR system that leverages angle and spectro-temporal information from micro-Doppler signatures. Our system utilizes a multi-channel micro-Doppler representation corresponding to the number of virtual antenna receivers as input. Then, a lightweight dilated convolutional network, namely SST-DCN, extracts spatial-aware multi-scale spectro-temporal information through time-frequency dilated convolutions. Experimental results on our real-world dataset demonstrate the superiority of our approach compared to conventional features and other state-of-the-art radar-based HAR systems.</div></div>\",\"PeriodicalId\":18349,\"journal\":{\"name\":\"Measurement\",\"volume\":\"256 \",\"pages\":\"Article 118056\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263224125014150\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224125014150","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

人类活动识别(HAR)在帮助我们的日常生活中越来越重要,毫米波(mmWave)雷达传感器由于其出色的空间和速度分辨率而成为一种有前途的非侵入性解决方案。尽管现有的基于雷达的系统已经显示出强大的性能,但它们主要关注微多普勒特征,而忽略了角度信息,这可能会阻碍在现实场景中的实际部署。此外,目前使用毫米波雷达的最先进的识别模型通常需要大量的计算资源,这使得集成到资源受限的设备中具有挑战性。这项工作提出了一种有效的基于雷达的HAR系统,该系统利用了来自微多普勒特征的角度和光谱时间信息。我们的系统采用多通道微多普勒表示,对应于虚拟天线接收器的数量作为输入。然后,通过时频扩展卷积,构建轻量级扩展卷积网络SST-DCN,提取空间感知的多尺度光谱-时间信息。在我们的真实数据集上的实验结果表明,与传统特征和其他最先进的基于雷达的HAR系统相比,我们的方法具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing robust human activity recognition via informative mmWave radar characteristics and a lightweight spatio-spectro-temporal network
Human activity recognition (HAR) is increasingly important in aiding our daily life, with millimeter-wave (mmWave) radar sensors emerging as a promising noninvasive solution thanks to their excellent spatial and velocity resolution. Although existing radar-based systems have shown strong performance, they primarily focus on micro-Doppler signatures while neglecting angle information, which can hinder practical deployment in real-world scenarios. Moreover, current state-of-the-art recognition models using mmWave radar often require substantial computational resources, making integration into resource-constrained devices challenging. This work proposes an efficient radar-based HAR system that leverages angle and spectro-temporal information from micro-Doppler signatures. Our system utilizes a multi-channel micro-Doppler representation corresponding to the number of virtual antenna receivers as input. Then, a lightweight dilated convolutional network, namely SST-DCN, extracts spatial-aware multi-scale spectro-temporal information through time-frequency dilated convolutions. Experimental results on our real-world dataset demonstrate the superiority of our approach compared to conventional features and other state-of-the-art radar-based HAR systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement
Measurement 工程技术-工程:综合
CiteScore
10.20
自引率
12.50%
发文量
1589
审稿时长
12.1 months
期刊介绍: Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信