Liang Mei , Xuekai Hong , Hangyi Liu , Xinglong Yang , Wei Peng , Zheng Kong
{"title":"开放路径下全角度气溶胶散射相函数的高分辨率测量","authors":"Liang Mei , Xuekai Hong , Hangyi Liu , Xinglong Yang , Wei Peng , Zheng Kong","doi":"10.1016/j.optlastec.2025.113386","DOIUrl":null,"url":null,"abstract":"<div><div>The aerosol scattering phase function (ASPF), a crucial element of aerosol optical properties, is pivotal for radiative forcing calculations and aerosol remote sensing detection. Current detection methods for the ASPF include multi-sensor detection, single-sensor rotational detection and imaging detection. However, these methods face challenges in achieving high-resolution full-angle measurement, particularly for small forward (i.e., less than 10°) or backward (i.e., more than 170°) scattering angles in open path. In this work, a full-angle ASPF detection system based on the multi-field-of-view Scheimpflug lidar technique has been proposed and demonstrated. A 450 nm continuous-wave semiconductor laser was utilized as the light source and four CMOS image sensors were employed as detectors. To detect the full-angle ASPF, four receiving units capture angular scattering signals across different angle ranges, namely 0°–20°, 10°–96°, 84°–170°, 160°–180°, respectively. The influence of the relative illumination and angular response of the used image sensors have been corrected, and a signal stitching algorithm was developed to obtain a complete 0–180° angular scattering signal. Atmospheric measurements have been conducted by employing the full-angle ASPF detection system in open path. The experimental results of the ASPF have been compared with the AERONET data from the Socheongcho station and simulated ASPF based on the typical aerosol models in mainland China, showing excellent agreement. The promising results demonstrated in this work have shown a great potential for detecting the full-angle ASPF in open path.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"191 ","pages":"Article 113386"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-resolution measurements of the full-angle aerosol scattering phase function in open path\",\"authors\":\"Liang Mei , Xuekai Hong , Hangyi Liu , Xinglong Yang , Wei Peng , Zheng Kong\",\"doi\":\"10.1016/j.optlastec.2025.113386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The aerosol scattering phase function (ASPF), a crucial element of aerosol optical properties, is pivotal for radiative forcing calculations and aerosol remote sensing detection. Current detection methods for the ASPF include multi-sensor detection, single-sensor rotational detection and imaging detection. However, these methods face challenges in achieving high-resolution full-angle measurement, particularly for small forward (i.e., less than 10°) or backward (i.e., more than 170°) scattering angles in open path. In this work, a full-angle ASPF detection system based on the multi-field-of-view Scheimpflug lidar technique has been proposed and demonstrated. A 450 nm continuous-wave semiconductor laser was utilized as the light source and four CMOS image sensors were employed as detectors. To detect the full-angle ASPF, four receiving units capture angular scattering signals across different angle ranges, namely 0°–20°, 10°–96°, 84°–170°, 160°–180°, respectively. The influence of the relative illumination and angular response of the used image sensors have been corrected, and a signal stitching algorithm was developed to obtain a complete 0–180° angular scattering signal. Atmospheric measurements have been conducted by employing the full-angle ASPF detection system in open path. The experimental results of the ASPF have been compared with the AERONET data from the Socheongcho station and simulated ASPF based on the typical aerosol models in mainland China, showing excellent agreement. The promising results demonstrated in this work have shown a great potential for detecting the full-angle ASPF in open path.</div></div>\",\"PeriodicalId\":19511,\"journal\":{\"name\":\"Optics and Laser Technology\",\"volume\":\"191 \",\"pages\":\"Article 113386\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Laser Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399225009776\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399225009776","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
High-resolution measurements of the full-angle aerosol scattering phase function in open path
The aerosol scattering phase function (ASPF), a crucial element of aerosol optical properties, is pivotal for radiative forcing calculations and aerosol remote sensing detection. Current detection methods for the ASPF include multi-sensor detection, single-sensor rotational detection and imaging detection. However, these methods face challenges in achieving high-resolution full-angle measurement, particularly for small forward (i.e., less than 10°) or backward (i.e., more than 170°) scattering angles in open path. In this work, a full-angle ASPF detection system based on the multi-field-of-view Scheimpflug lidar technique has been proposed and demonstrated. A 450 nm continuous-wave semiconductor laser was utilized as the light source and four CMOS image sensors were employed as detectors. To detect the full-angle ASPF, four receiving units capture angular scattering signals across different angle ranges, namely 0°–20°, 10°–96°, 84°–170°, 160°–180°, respectively. The influence of the relative illumination and angular response of the used image sensors have been corrected, and a signal stitching algorithm was developed to obtain a complete 0–180° angular scattering signal. Atmospheric measurements have been conducted by employing the full-angle ASPF detection system in open path. The experimental results of the ASPF have been compared with the AERONET data from the Socheongcho station and simulated ASPF based on the typical aerosol models in mainland China, showing excellent agreement. The promising results demonstrated in this work have shown a great potential for detecting the full-angle ASPF in open path.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems