室外环境下精确视觉SLAM的动态目标移除和密集映射

IF 5.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Gang Li , Jian Yu , Huilan Huang , Yongheng Zhu , Jinxiang Cai , Hao Luo , Xiaoman Xu , Chen Huang
{"title":"室外环境下精确视觉SLAM的动态目标移除和密集映射","authors":"Gang Li ,&nbsp;Jian Yu ,&nbsp;Huilan Huang ,&nbsp;Yongheng Zhu ,&nbsp;Jinxiang Cai ,&nbsp;Hao Luo ,&nbsp;Xiaoman Xu ,&nbsp;Chen Huang","doi":"10.1016/j.measurement.2025.118172","DOIUrl":null,"url":null,"abstract":"<div><div>Visual SLAM systems face significant challenges in dynamic outdoor environments due to varying lighting conditions, the prevalence of moving objects, and distant small dynamic targets. To address these issues, we propose a stereo vision-based SLAM framework that integrates dynamic object removal and dense mapping. Potential dynamic features are identified using the moving consistency check module, and actual moving objects are eliminated via the dynamic region judgment module. The stereo camera configuration enables robust depth computation via an embedded stereo matching network, ensuring reliable metric scale estimation for dense mapping in autonomous navigation scenarios. Experimental validation on stereo-compatible datasets (KITTI, EuRoC, VIODE) demonstrates that our stereo vision-based method significantly improves trajectory accuracy in highly dynamic scenes, outperforming state-of-the-art approaches. On the 11 sequences of the KITTI dataset, our approach achieved an 11.16 % improvement in the Absolute Trajectory Error (ATE) metric compared to ORB-SLAM3. In highly dynamic scenes, the improvement in ATE reached as high as 36.40 %. Our method improves localization accuracy by 14.9 %–47.4 % compared to other state-of-the-art methods in ATE under highly dynamic conditions. Additionally, high-quality dense point cloud maps are generated, laying a solid foundation for advanced robotic applications.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"256 ","pages":"Article 118172"},"PeriodicalIF":5.2000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic object removal and dense mapping for accurate visual SLAM in outdoor environments\",\"authors\":\"Gang Li ,&nbsp;Jian Yu ,&nbsp;Huilan Huang ,&nbsp;Yongheng Zhu ,&nbsp;Jinxiang Cai ,&nbsp;Hao Luo ,&nbsp;Xiaoman Xu ,&nbsp;Chen Huang\",\"doi\":\"10.1016/j.measurement.2025.118172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Visual SLAM systems face significant challenges in dynamic outdoor environments due to varying lighting conditions, the prevalence of moving objects, and distant small dynamic targets. To address these issues, we propose a stereo vision-based SLAM framework that integrates dynamic object removal and dense mapping. Potential dynamic features are identified using the moving consistency check module, and actual moving objects are eliminated via the dynamic region judgment module. The stereo camera configuration enables robust depth computation via an embedded stereo matching network, ensuring reliable metric scale estimation for dense mapping in autonomous navigation scenarios. Experimental validation on stereo-compatible datasets (KITTI, EuRoC, VIODE) demonstrates that our stereo vision-based method significantly improves trajectory accuracy in highly dynamic scenes, outperforming state-of-the-art approaches. On the 11 sequences of the KITTI dataset, our approach achieved an 11.16 % improvement in the Absolute Trajectory Error (ATE) metric compared to ORB-SLAM3. In highly dynamic scenes, the improvement in ATE reached as high as 36.40 %. Our method improves localization accuracy by 14.9 %–47.4 % compared to other state-of-the-art methods in ATE under highly dynamic conditions. Additionally, high-quality dense point cloud maps are generated, laying a solid foundation for advanced robotic applications.</div></div>\",\"PeriodicalId\":18349,\"journal\":{\"name\":\"Measurement\",\"volume\":\"256 \",\"pages\":\"Article 118172\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263224125015313\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224125015313","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于光照条件的变化、移动物体的普遍存在以及远距离小动态目标的存在,视觉SLAM系统在动态室外环境中面临着巨大的挑战。为了解决这些问题,我们提出了一个基于立体视觉的SLAM框架,该框架集成了动态目标移除和密集映射。通过运动一致性检查模块识别潜在的动态特征,通过动态区域判断模块消除实际的运动目标。立体相机配置通过嵌入式立体匹配网络实现了强大的深度计算,确保了自主导航场景中密集测绘的可靠度量尺度估计。在立体兼容数据集(KITTI, EuRoC, VIODE)上的实验验证表明,我们基于立体视觉的方法显著提高了高动态场景下的轨迹精度,优于最先进的方法。在KITTI数据集的11个序列上,我们的方法在绝对轨迹误差(ATE)指标上比ORB-SLAM3提高了11.16%。在高动态场景下,ATE的改善率高达36.40%。在高动态条件下,与其他最先进的ATE方法相比,该方法的定位精度提高了14.9% - 47.4%。此外,还生成了高质量的密集点云地图,为先进的机器人应用奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic object removal and dense mapping for accurate visual SLAM in outdoor environments
Visual SLAM systems face significant challenges in dynamic outdoor environments due to varying lighting conditions, the prevalence of moving objects, and distant small dynamic targets. To address these issues, we propose a stereo vision-based SLAM framework that integrates dynamic object removal and dense mapping. Potential dynamic features are identified using the moving consistency check module, and actual moving objects are eliminated via the dynamic region judgment module. The stereo camera configuration enables robust depth computation via an embedded stereo matching network, ensuring reliable metric scale estimation for dense mapping in autonomous navigation scenarios. Experimental validation on stereo-compatible datasets (KITTI, EuRoC, VIODE) demonstrates that our stereo vision-based method significantly improves trajectory accuracy in highly dynamic scenes, outperforming state-of-the-art approaches. On the 11 sequences of the KITTI dataset, our approach achieved an 11.16 % improvement in the Absolute Trajectory Error (ATE) metric compared to ORB-SLAM3. In highly dynamic scenes, the improvement in ATE reached as high as 36.40 %. Our method improves localization accuracy by 14.9 %–47.4 % compared to other state-of-the-art methods in ATE under highly dynamic conditions. Additionally, high-quality dense point cloud maps are generated, laying a solid foundation for advanced robotic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement
Measurement 工程技术-工程:综合
CiteScore
10.20
自引率
12.50%
发文量
1589
审稿时长
12.1 months
期刊介绍: Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信