脱乙酰酶结构导向工程高效生物合成O-(3-氯-2-丙烯)羟胺。

IF 6.2 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Yinfeng Huang, Xia Li, Mengnan Han, Jiahui Huang, Liangjun Li, Shuping Zou*, Yaping Xue and Yuguo Zheng, 
{"title":"脱乙酰酶结构导向工程高效生物合成O-(3-氯-2-丙烯)羟胺。","authors":"Yinfeng Huang,&nbsp;Xia Li,&nbsp;Mengnan Han,&nbsp;Jiahui Huang,&nbsp;Liangjun Li,&nbsp;Shuping Zou*,&nbsp;Yaping Xue and Yuguo Zheng,&nbsp;","doi":"10.1021/acs.jafc.5c03751","DOIUrl":null,"url":null,"abstract":"<p >Clethodim is a widely utilized herbicide whose production depends on <i>O</i>-(3-chloro-2-propenyl)hydroxylamine (OCH) as a key intermediate. Enzymatic synthesis of OCH via deacetylases presents a sustainable alternative to traditional chemical methods. However, its industrial application is limited by low catalytic efficiency and narrow substrate specificity. In this study, to enhance the enzymatic deacetylation activity of native enzymes toward the non-natural substrate <i>N</i>-[(<i>E</i>)-3-chloroprop-2-enoxy]acetamide (NECA), we implement a structure-guided partition engineering strategy, systematically partitioning the enzyme into distinct regions for targeted modifications. The optimized variant <i>Ec</i>Deac<sup>Y330A-C331N–H355Y</sup> exhibited a 53-fold improvement in catalytic efficiency. Moreover, the engineered deacetylase displayed broadened substrate specificity. Molecular dynamics simulations revealed that these improvements stemmed from optimized substrate interactions, reduced spatial constraints, and improved hydrophilicity. This study demonstrates the positive impact on industrial OCH synthesis and confirms the speed and effectiveness of the partition engineering modification strategy.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"73 26","pages":"16526–16535"},"PeriodicalIF":6.2000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Efficient Biosynthesis of O-(3-Chloro-2-propenyl)hydroxylamine through Structure-Guided Engineering of Deacetylase\",\"authors\":\"Yinfeng Huang,&nbsp;Xia Li,&nbsp;Mengnan Han,&nbsp;Jiahui Huang,&nbsp;Liangjun Li,&nbsp;Shuping Zou*,&nbsp;Yaping Xue and Yuguo Zheng,&nbsp;\",\"doi\":\"10.1021/acs.jafc.5c03751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Clethodim is a widely utilized herbicide whose production depends on <i>O</i>-(3-chloro-2-propenyl)hydroxylamine (OCH) as a key intermediate. Enzymatic synthesis of OCH via deacetylases presents a sustainable alternative to traditional chemical methods. However, its industrial application is limited by low catalytic efficiency and narrow substrate specificity. In this study, to enhance the enzymatic deacetylation activity of native enzymes toward the non-natural substrate <i>N</i>-[(<i>E</i>)-3-chloroprop-2-enoxy]acetamide (NECA), we implement a structure-guided partition engineering strategy, systematically partitioning the enzyme into distinct regions for targeted modifications. The optimized variant <i>Ec</i>Deac<sup>Y330A-C331N–H355Y</sup> exhibited a 53-fold improvement in catalytic efficiency. Moreover, the engineered deacetylase displayed broadened substrate specificity. Molecular dynamics simulations revealed that these improvements stemmed from optimized substrate interactions, reduced spatial constraints, and improved hydrophilicity. This study demonstrates the positive impact on industrial OCH synthesis and confirms the speed and effectiveness of the partition engineering modification strategy.</p>\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\"73 26\",\"pages\":\"16526–16535\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jafc.5c03751\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jafc.5c03751","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

灭虫灵是一种广泛使用的除草剂,其生产依赖于O-(3-氯-2-丙烯基)羟胺(OCH)作为关键中间体。通过去乙酰化酶合成OCH是传统化学方法的可持续替代方法。然而,其工业应用受到催化效率低和底物特异性窄的限制。在本研究中,为了增强天然酶对非天然底物N-[(E)-3-氯丙-2-烯氧基]乙酰胺(NECA)的酶去乙酰化活性,我们实施了一种结构导向的分割工程策略,系统地将酶划分为不同的区域进行靶向修饰。优化后的EcDeacY330A-C331N-H355Y的催化效率提高了53倍。此外,工程脱乙酰酶显示出更宽的底物特异性。分子动力学模拟表明,这些改进源于优化的底物相互作用、减少的空间约束和改善的亲水性。本研究论证了分区工程改造策略对工业OCH合成的积极影响,证实了分区工程改造策略的快速性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Highly Efficient Biosynthesis of O-(3-Chloro-2-propenyl)hydroxylamine through Structure-Guided Engineering of Deacetylase

Highly Efficient Biosynthesis of O-(3-Chloro-2-propenyl)hydroxylamine through Structure-Guided Engineering of Deacetylase

Clethodim is a widely utilized herbicide whose production depends on O-(3-chloro-2-propenyl)hydroxylamine (OCH) as a key intermediate. Enzymatic synthesis of OCH via deacetylases presents a sustainable alternative to traditional chemical methods. However, its industrial application is limited by low catalytic efficiency and narrow substrate specificity. In this study, to enhance the enzymatic deacetylation activity of native enzymes toward the non-natural substrate N-[(E)-3-chloroprop-2-enoxy]acetamide (NECA), we implement a structure-guided partition engineering strategy, systematically partitioning the enzyme into distinct regions for targeted modifications. The optimized variant EcDeacY330A-C331N–H355Y exhibited a 53-fold improvement in catalytic efficiency. Moreover, the engineered deacetylase displayed broadened substrate specificity. Molecular dynamics simulations revealed that these improvements stemmed from optimized substrate interactions, reduced spatial constraints, and improved hydrophilicity. This study demonstrates the positive impact on industrial OCH synthesis and confirms the speed and effectiveness of the partition engineering modification strategy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Agricultural and Food Chemistry
Journal of Agricultural and Food Chemistry 农林科学-农业综合
CiteScore
9.90
自引率
8.20%
发文量
1375
审稿时长
2.3 months
期刊介绍: The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信