海洋源真菌Humicola sp. HK1-8抗真菌Azaphilone二聚体的分子网络发现。

IF 3.3 2区 生物学 Q2 CHEMISTRY, MEDICINAL
Min Chen, Zhong-Hui Li, Xia-Hao Zhu, Li Shen, Long Chen, Tian-Chi Wu, Li-Kui Zhang, Juan-Juan Wang, Chang-Yun Wang
{"title":"海洋源真菌Humicola sp. HK1-8抗真菌Azaphilone二聚体的分子网络发现。","authors":"Min Chen, Zhong-Hui Li, Xia-Hao Zhu, Li Shen, Long Chen, Tian-Chi Wu, Li-Kui Zhang, Juan-Juan Wang, Chang-Yun Wang","doi":"10.1021/acs.jnatprod.5c00531","DOIUrl":null,"url":null,"abstract":"<p><p>A novel azaphilone dimer, humilone A (<b>1</b>), along with its related monomer, humilone B (<b>2</b>), was isolated from cultures of the marine-derived fungus <i>Humicola</i> sp. HK1-8 using a molecular networking-guided discovery approach. Further investigation of the molecular family of azaphilone dimers led to the putative identification of four analogues, humilones C-F (<b>3</b>-<b>6</b>), based on systematic analysis of their characteristic MS/MS fragmentation patterns. Detailed fragmentation studies of the dimers revealed that the predominant cleavage fragments originated from C-C bond scission at the dimeric methylene bridge. Compound <b>1</b> displayed antifungal activity against <i>Rhizoctonia solani</i>.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Networking-Driven Discovery of Antifungal Azaphilone Dimers from the Marine-Derived Fungus <i>Humicola</i> sp. HK1-8.\",\"authors\":\"Min Chen, Zhong-Hui Li, Xia-Hao Zhu, Li Shen, Long Chen, Tian-Chi Wu, Li-Kui Zhang, Juan-Juan Wang, Chang-Yun Wang\",\"doi\":\"10.1021/acs.jnatprod.5c00531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A novel azaphilone dimer, humilone A (<b>1</b>), along with its related monomer, humilone B (<b>2</b>), was isolated from cultures of the marine-derived fungus <i>Humicola</i> sp. HK1-8 using a molecular networking-guided discovery approach. Further investigation of the molecular family of azaphilone dimers led to the putative identification of four analogues, humilones C-F (<b>3</b>-<b>6</b>), based on systematic analysis of their characteristic MS/MS fragmentation patterns. Detailed fragmentation studies of the dimers revealed that the predominant cleavage fragments originated from C-C bond scission at the dimeric methylene bridge. Compound <b>1</b> displayed antifungal activity against <i>Rhizoctonia solani</i>.</p>\",\"PeriodicalId\":47,\"journal\":{\"name\":\"Journal of Natural Products \",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Products \",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jnatprod.5c00531\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jnatprod.5c00531","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

利用分子网络引导的发现方法,从海洋来源真菌Humicola sp. HK1-8的培养物中分离出一种新的氮蚜酮二聚体humilone A(1)及其相关单体humilone B(2)。对氮唑啉二聚体分子家族的进一步研究,基于对其特征的MS/MS片段模式的系统分析,得出了四种类似物,即葎草酮C-F(3-6)。对二聚体的详细裂解研究表明,主要的裂解片段来自二聚体亚甲基桥上的C-C键断裂。化合物1对茄枯丝核菌有一定的抑制作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular Networking-Driven Discovery of Antifungal Azaphilone Dimers from the Marine-Derived Fungus Humicola sp. HK1-8.

A novel azaphilone dimer, humilone A (1), along with its related monomer, humilone B (2), was isolated from cultures of the marine-derived fungus Humicola sp. HK1-8 using a molecular networking-guided discovery approach. Further investigation of the molecular family of azaphilone dimers led to the putative identification of four analogues, humilones C-F (3-6), based on systematic analysis of their characteristic MS/MS fragmentation patterns. Detailed fragmentation studies of the dimers revealed that the predominant cleavage fragments originated from C-C bond scission at the dimeric methylene bridge. Compound 1 displayed antifungal activity against Rhizoctonia solani.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
5.90%
发文量
294
审稿时长
2.3 months
期刊介绍: The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained. Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin. When new compounds are reported, manuscripts describing their biological activity are much preferred. Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信