内源性NT-3在海马齿状回神经元活动和神经发生中的作用。

IF 2.3 4区 医学 Q3 NEUROSCIENCES
Nanami Kasakura, Yuka Murata, Kanzo Suzuki, Eri Segi-Nishida
{"title":"内源性NT-3在海马齿状回神经元活动和神经发生中的作用。","authors":"Nanami Kasakura,&nbsp;Yuka Murata,&nbsp;Kanzo Suzuki,&nbsp;Eri Segi-Nishida","doi":"10.1016/j.neures.2025.104923","DOIUrl":null,"url":null,"abstract":"<div><div>Neurotrophin-3 (NT-3) is a neurotrophic factor that regulates neuronal differentiation and synaptic plasticity. In the adult central nervous system, NT-3 is predominantly expressed in the hippocampal dentate gyrus (DG). Chronic antidepressant treatment suppresses <em>Ntf3</em> expression in the DG; however, its functional significance remains unclear. To investigate the role of NT-3 in the adult DG, an adeno-associated virus (AAV)-mediated knockdown system was employed in mice. Immunohistochemical analysis revealed that TrkC, the high-affinity receptor for NT-3, was highly expressed in the DG. Under basal conditions, NT-3 knockdown significantly reduced the expression of FosB, an activity-dependent marker. Gene expression analysis showed that <em>Arc</em>, <em>Egr1</em>, and <em>Fosb</em> expressions were also significantly decreased. Although NT-3 knockdown did not affect cell proliferation in the DG, it impaired dendritic elongation in immature neurons. Additionally, NT-3 knockdown significantly reduced <em>Npy</em> expression. These findings suggest that endogenous NT-3 in the adult DG regulates both basal neuronal activity and newborn neuronal differentiation, contributing to hippocampal homeostasis. Further research is required to determine whether NT-3 downregulation induced by chronic antidepressant treatment influences neuronal activity and hippocampal plasticity in neuropsychiatric conditions.</div></div>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":"218 ","pages":"Article 104923"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of endogenous NT-3 in neuronal activity and neurogenesis in the hippocampal dentate gyrus\",\"authors\":\"Nanami Kasakura,&nbsp;Yuka Murata,&nbsp;Kanzo Suzuki,&nbsp;Eri Segi-Nishida\",\"doi\":\"10.1016/j.neures.2025.104923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Neurotrophin-3 (NT-3) is a neurotrophic factor that regulates neuronal differentiation and synaptic plasticity. In the adult central nervous system, NT-3 is predominantly expressed in the hippocampal dentate gyrus (DG). Chronic antidepressant treatment suppresses <em>Ntf3</em> expression in the DG; however, its functional significance remains unclear. To investigate the role of NT-3 in the adult DG, an adeno-associated virus (AAV)-mediated knockdown system was employed in mice. Immunohistochemical analysis revealed that TrkC, the high-affinity receptor for NT-3, was highly expressed in the DG. Under basal conditions, NT-3 knockdown significantly reduced the expression of FosB, an activity-dependent marker. Gene expression analysis showed that <em>Arc</em>, <em>Egr1</em>, and <em>Fosb</em> expressions were also significantly decreased. Although NT-3 knockdown did not affect cell proliferation in the DG, it impaired dendritic elongation in immature neurons. Additionally, NT-3 knockdown significantly reduced <em>Npy</em> expression. These findings suggest that endogenous NT-3 in the adult DG regulates both basal neuronal activity and newborn neuronal differentiation, contributing to hippocampal homeostasis. Further research is required to determine whether NT-3 downregulation induced by chronic antidepressant treatment influences neuronal activity and hippocampal plasticity in neuropsychiatric conditions.</div></div>\",\"PeriodicalId\":19146,\"journal\":{\"name\":\"Neuroscience Research\",\"volume\":\"218 \",\"pages\":\"Article 104923\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168010225001063\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168010225001063","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

神经营养因子-3 (NT-3)是一种调节神经元分化和突触可塑性的神经营养因子。在成人中枢神经系统中,NT-3主要在海马齿状回(DG)中表达。慢性抗抑郁治疗抑制Ntf3在DG中的表达;然而,其功能意义尚不清楚。为了研究NT-3在成年DG中的作用,在小鼠中采用了腺相关病毒(AAV)介导的敲低系统。免疫组化分析显示NT-3高亲和受体TrkC在DG中高表达。在基础条件下,NT-3敲低可显著降低FosB(一种活性依赖性标志物)的表达。基因表达分析显示,Arc、Egr1和Fosb的表达也显著降低。虽然NT-3敲除不影响DG中的细胞增殖,但它会损害未成熟神经元的树突伸长。此外,NT-3敲除显著降低Npy的表达。这些发现表明,成人DG中的内源性NT-3调节基础神经元活动和新生神经元分化,有助于海马稳态。慢性抗抑郁药物治疗诱导的NT-3下调是否会影响神经精神疾病患者的神经元活动和海马可塑性,尚需进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Role of endogenous NT-3 in neuronal activity and neurogenesis in the hippocampal dentate gyrus
Neurotrophin-3 (NT-3) is a neurotrophic factor that regulates neuronal differentiation and synaptic plasticity. In the adult central nervous system, NT-3 is predominantly expressed in the hippocampal dentate gyrus (DG). Chronic antidepressant treatment suppresses Ntf3 expression in the DG; however, its functional significance remains unclear. To investigate the role of NT-3 in the adult DG, an adeno-associated virus (AAV)-mediated knockdown system was employed in mice. Immunohistochemical analysis revealed that TrkC, the high-affinity receptor for NT-3, was highly expressed in the DG. Under basal conditions, NT-3 knockdown significantly reduced the expression of FosB, an activity-dependent marker. Gene expression analysis showed that Arc, Egr1, and Fosb expressions were also significantly decreased. Although NT-3 knockdown did not affect cell proliferation in the DG, it impaired dendritic elongation in immature neurons. Additionally, NT-3 knockdown significantly reduced Npy expression. These findings suggest that endogenous NT-3 in the adult DG regulates both basal neuronal activity and newborn neuronal differentiation, contributing to hippocampal homeostasis. Further research is required to determine whether NT-3 downregulation induced by chronic antidepressant treatment influences neuronal activity and hippocampal plasticity in neuropsychiatric conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscience Research
Neuroscience Research 医学-神经科学
CiteScore
5.60
自引率
3.40%
发文量
136
审稿时长
28 days
期刊介绍: The international journal publishing original full-length research articles, short communications, technical notes, and reviews on all aspects of neuroscience Neuroscience Research is an international journal for high quality articles in all branches of neuroscience, from the molecular to the behavioral levels. The journal is published in collaboration with the Japan Neuroscience Society and is open to all contributors in the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信