Nanami Kasakura, Yuka Murata, Kanzo Suzuki, Eri Segi-Nishida
{"title":"内源性NT-3在海马齿状回神经元活动和神经发生中的作用。","authors":"Nanami Kasakura, Yuka Murata, Kanzo Suzuki, Eri Segi-Nishida","doi":"10.1016/j.neures.2025.104923","DOIUrl":null,"url":null,"abstract":"<div><div>Neurotrophin-3 (NT-3) is a neurotrophic factor that regulates neuronal differentiation and synaptic plasticity. In the adult central nervous system, NT-3 is predominantly expressed in the hippocampal dentate gyrus (DG). Chronic antidepressant treatment suppresses <em>Ntf3</em> expression in the DG; however, its functional significance remains unclear. To investigate the role of NT-3 in the adult DG, an adeno-associated virus (AAV)-mediated knockdown system was employed in mice. Immunohistochemical analysis revealed that TrkC, the high-affinity receptor for NT-3, was highly expressed in the DG. Under basal conditions, NT-3 knockdown significantly reduced the expression of FosB, an activity-dependent marker. Gene expression analysis showed that <em>Arc</em>, <em>Egr1</em>, and <em>Fosb</em> expressions were also significantly decreased. Although NT-3 knockdown did not affect cell proliferation in the DG, it impaired dendritic elongation in immature neurons. Additionally, NT-3 knockdown significantly reduced <em>Npy</em> expression. These findings suggest that endogenous NT-3 in the adult DG regulates both basal neuronal activity and newborn neuronal differentiation, contributing to hippocampal homeostasis. Further research is required to determine whether NT-3 downregulation induced by chronic antidepressant treatment influences neuronal activity and hippocampal plasticity in neuropsychiatric conditions.</div></div>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":"218 ","pages":"Article 104923"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of endogenous NT-3 in neuronal activity and neurogenesis in the hippocampal dentate gyrus\",\"authors\":\"Nanami Kasakura, Yuka Murata, Kanzo Suzuki, Eri Segi-Nishida\",\"doi\":\"10.1016/j.neures.2025.104923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Neurotrophin-3 (NT-3) is a neurotrophic factor that regulates neuronal differentiation and synaptic plasticity. In the adult central nervous system, NT-3 is predominantly expressed in the hippocampal dentate gyrus (DG). Chronic antidepressant treatment suppresses <em>Ntf3</em> expression in the DG; however, its functional significance remains unclear. To investigate the role of NT-3 in the adult DG, an adeno-associated virus (AAV)-mediated knockdown system was employed in mice. Immunohistochemical analysis revealed that TrkC, the high-affinity receptor for NT-3, was highly expressed in the DG. Under basal conditions, NT-3 knockdown significantly reduced the expression of FosB, an activity-dependent marker. Gene expression analysis showed that <em>Arc</em>, <em>Egr1</em>, and <em>Fosb</em> expressions were also significantly decreased. Although NT-3 knockdown did not affect cell proliferation in the DG, it impaired dendritic elongation in immature neurons. Additionally, NT-3 knockdown significantly reduced <em>Npy</em> expression. These findings suggest that endogenous NT-3 in the adult DG regulates both basal neuronal activity and newborn neuronal differentiation, contributing to hippocampal homeostasis. Further research is required to determine whether NT-3 downregulation induced by chronic antidepressant treatment influences neuronal activity and hippocampal plasticity in neuropsychiatric conditions.</div></div>\",\"PeriodicalId\":19146,\"journal\":{\"name\":\"Neuroscience Research\",\"volume\":\"218 \",\"pages\":\"Article 104923\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168010225001063\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168010225001063","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Role of endogenous NT-3 in neuronal activity and neurogenesis in the hippocampal dentate gyrus
Neurotrophin-3 (NT-3) is a neurotrophic factor that regulates neuronal differentiation and synaptic plasticity. In the adult central nervous system, NT-3 is predominantly expressed in the hippocampal dentate gyrus (DG). Chronic antidepressant treatment suppresses Ntf3 expression in the DG; however, its functional significance remains unclear. To investigate the role of NT-3 in the adult DG, an adeno-associated virus (AAV)-mediated knockdown system was employed in mice. Immunohistochemical analysis revealed that TrkC, the high-affinity receptor for NT-3, was highly expressed in the DG. Under basal conditions, NT-3 knockdown significantly reduced the expression of FosB, an activity-dependent marker. Gene expression analysis showed that Arc, Egr1, and Fosb expressions were also significantly decreased. Although NT-3 knockdown did not affect cell proliferation in the DG, it impaired dendritic elongation in immature neurons. Additionally, NT-3 knockdown significantly reduced Npy expression. These findings suggest that endogenous NT-3 in the adult DG regulates both basal neuronal activity and newborn neuronal differentiation, contributing to hippocampal homeostasis. Further research is required to determine whether NT-3 downregulation induced by chronic antidepressant treatment influences neuronal activity and hippocampal plasticity in neuropsychiatric conditions.
期刊介绍:
The international journal publishing original full-length research articles, short communications, technical notes, and reviews on all aspects of neuroscience
Neuroscience Research is an international journal for high quality articles in all branches of neuroscience, from the molecular to the behavioral levels. The journal is published in collaboration with the Japan Neuroscience Society and is open to all contributors in the world.