微震监测中p波到达自动拾取:集成多特征聚类和增强AIC-STA/LTA

IF 5.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Liyun Zhou , Pingan Peng , Liguan Wang , He Meng , Zhaohao Wu
{"title":"微震监测中p波到达自动拾取:集成多特征聚类和增强AIC-STA/LTA","authors":"Liyun Zhou ,&nbsp;Pingan Peng ,&nbsp;Liguan Wang ,&nbsp;He Meng ,&nbsp;Zhaohao Wu","doi":"10.1016/j.measurement.2025.118143","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate P-wave arrival time picking remains a major challenge in microseismic event analysis due to variable signal-to-noise ratio (SNR) conditions and complex waveform characteristics. We propose a unified and adaptive framework that effectively handles both. For high-SNR signals, we enhance the AIC-STA/LTA method by introducing a novel sequence segmentation strategy and precise extremum identification. For low-SNR scenarios, we design a robust three-domain feature fusion scheme—combining time-domain short-time energy, cepstral-domain MFCC, and statistical-domain kurtosis—followed by K-means clustering to achieve accurate waveform segmentation. Validation on real engineering datasets shows that our method bridges the SNR disparity with significantly improved picking accuracy. Specifically, it increases the proportion of small-error picks (≤5ms) by 20 % and reduces large-error picks (&gt;20 ms) by 50 %, thereby minimizing manual correction, which is essential for preserving the accuracy of subsequent event location. These advancements greatly reduce human intervention and enhance the reliability and scalability of automated microseismic monitoring systems.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"256 ","pages":"Article 118143"},"PeriodicalIF":5.2000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated P-wave arrival picking in microseismic monitoring: Integrating multi-feature clustering and enhanced AIC-STA/LTA\",\"authors\":\"Liyun Zhou ,&nbsp;Pingan Peng ,&nbsp;Liguan Wang ,&nbsp;He Meng ,&nbsp;Zhaohao Wu\",\"doi\":\"10.1016/j.measurement.2025.118143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate P-wave arrival time picking remains a major challenge in microseismic event analysis due to variable signal-to-noise ratio (SNR) conditions and complex waveform characteristics. We propose a unified and adaptive framework that effectively handles both. For high-SNR signals, we enhance the AIC-STA/LTA method by introducing a novel sequence segmentation strategy and precise extremum identification. For low-SNR scenarios, we design a robust three-domain feature fusion scheme—combining time-domain short-time energy, cepstral-domain MFCC, and statistical-domain kurtosis—followed by K-means clustering to achieve accurate waveform segmentation. Validation on real engineering datasets shows that our method bridges the SNR disparity with significantly improved picking accuracy. Specifically, it increases the proportion of small-error picks (≤5ms) by 20 % and reduces large-error picks (&gt;20 ms) by 50 %, thereby minimizing manual correction, which is essential for preserving the accuracy of subsequent event location. These advancements greatly reduce human intervention and enhance the reliability and scalability of automated microseismic monitoring systems.</div></div>\",\"PeriodicalId\":18349,\"journal\":{\"name\":\"Measurement\",\"volume\":\"256 \",\"pages\":\"Article 118143\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263224125015027\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224125015027","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于信噪比变化和波形特征复杂,准确的p波到达时间拾取仍然是微地震事件分析的主要挑战。我们提出了一个统一的、自适应的框架,可以有效地处理这两个问题。对于高信噪比信号,我们通过引入新的序列分割策略和精确的极值识别来改进AIC-STA/LTA方法。对于低信噪比场景,我们设计了一种鲁棒的三域特征融合方案,结合时域短时能量、倒谱域MFCC和统计域峰度,然后进行k均值聚类,以实现精确的波形分割。在实际工程数据集上的验证表明,我们的方法在显著提高拾取精度的同时弥补了信噪比差异。具体来说,它将小误差拾取(≤5ms)的比例增加了20%,将大误差拾取(> 20ms)的比例减少了50%,从而最大限度地减少了人工校正,这对于保持后续事件定位的准确性至关重要。这些进步大大减少了人为干预,提高了自动化微震监测系统的可靠性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated P-wave arrival picking in microseismic monitoring: Integrating multi-feature clustering and enhanced AIC-STA/LTA
Accurate P-wave arrival time picking remains a major challenge in microseismic event analysis due to variable signal-to-noise ratio (SNR) conditions and complex waveform characteristics. We propose a unified and adaptive framework that effectively handles both. For high-SNR signals, we enhance the AIC-STA/LTA method by introducing a novel sequence segmentation strategy and precise extremum identification. For low-SNR scenarios, we design a robust three-domain feature fusion scheme—combining time-domain short-time energy, cepstral-domain MFCC, and statistical-domain kurtosis—followed by K-means clustering to achieve accurate waveform segmentation. Validation on real engineering datasets shows that our method bridges the SNR disparity with significantly improved picking accuracy. Specifically, it increases the proportion of small-error picks (≤5ms) by 20 % and reduces large-error picks (>20 ms) by 50 %, thereby minimizing manual correction, which is essential for preserving the accuracy of subsequent event location. These advancements greatly reduce human intervention and enhance the reliability and scalability of automated microseismic monitoring systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement
Measurement 工程技术-工程:综合
CiteScore
10.20
自引率
12.50%
发文量
1589
审稿时长
12.1 months
期刊介绍: Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信