使用联邦学习和西伯利亚虎优化器进行物联网攻击检测的分布式优化

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Brij B. Gupta , Akshat Gaurav , Wadee Alhalabi , Varsha Arya , Eman Alharbi , Kwok Tai Chui
{"title":"使用联邦学习和西伯利亚虎优化器进行物联网攻击检测的分布式优化","authors":"Brij B. Gupta ,&nbsp;Akshat Gaurav ,&nbsp;Wadee Alhalabi ,&nbsp;Varsha Arya ,&nbsp;Eman Alharbi ,&nbsp;Kwok Tai Chui","doi":"10.1016/j.icte.2025.02.012","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid growth of IoT devices has heightened the risk of botnet attacks, calling for scalable and distributed detection solutions. In this context, this study proposes a distributed optimization system for IoT attack detection using CNN model utilizing federated learning. After optimizing the hyperparameters of the model at the server, the Siberian Tiger Optimization (STO) method distributes these values to clients for dispersed training. Our model achieves accuracy, recall, and precision of 0.89978, 0.94355, and 0.94455, respectively, using the N-BaIoT dataset. These findings show, in spite of latency issues, the efficiency of federated learning in distributed IoT security systems.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"11 3","pages":"Pages 542-546"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed optimization for IoT attack detection using federated learning and Siberian Tiger optimizer\",\"authors\":\"Brij B. Gupta ,&nbsp;Akshat Gaurav ,&nbsp;Wadee Alhalabi ,&nbsp;Varsha Arya ,&nbsp;Eman Alharbi ,&nbsp;Kwok Tai Chui\",\"doi\":\"10.1016/j.icte.2025.02.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid growth of IoT devices has heightened the risk of botnet attacks, calling for scalable and distributed detection solutions. In this context, this study proposes a distributed optimization system for IoT attack detection using CNN model utilizing federated learning. After optimizing the hyperparameters of the model at the server, the Siberian Tiger Optimization (STO) method distributes these values to clients for dispersed training. Our model achieves accuracy, recall, and precision of 0.89978, 0.94355, and 0.94455, respectively, using the N-BaIoT dataset. These findings show, in spite of latency issues, the efficiency of federated learning in distributed IoT security systems.</div></div>\",\"PeriodicalId\":48526,\"journal\":{\"name\":\"ICT Express\",\"volume\":\"11 3\",\"pages\":\"Pages 542-546\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT Express\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405959525000281\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959525000281","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

物联网设备的快速增长增加了僵尸网络攻击的风险,需要可扩展和分布式检测解决方案。在此背景下,本研究提出了一种利用联合学习的CNN模型进行物联网攻击检测的分布式优化系统。西伯利亚虎优化(STO)方法在服务器端优化模型的超参数后,将这些值分发到客户端进行分散训练。我们的模型使用N-BaIoT数据集,准确率、召回率和精密度分别为0.89978、0.94355和0.94455。这些发现表明,尽管存在延迟问题,但分布式物联网安全系统中的联合学习效率很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed optimization for IoT attack detection using federated learning and Siberian Tiger optimizer
The rapid growth of IoT devices has heightened the risk of botnet attacks, calling for scalable and distributed detection solutions. In this context, this study proposes a distributed optimization system for IoT attack detection using CNN model utilizing federated learning. After optimizing the hyperparameters of the model at the server, the Siberian Tiger Optimization (STO) method distributes these values to clients for dispersed training. Our model achieves accuracy, recall, and precision of 0.89978, 0.94355, and 0.94455, respectively, using the N-BaIoT dataset. These findings show, in spite of latency issues, the efficiency of federated learning in distributed IoT security systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信