基于先验知识的组套索惩罚逻辑回归模型用于癫痫疾病预测建模。

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Xi Li, Yuanhua Qiao, Lijuan Duan, Jiang Du
{"title":"基于先验知识的组套索惩罚逻辑回归模型用于癫痫疾病预测建模。","authors":"Xi Li, Yuanhua Qiao, Lijuan Duan, Jiang Du","doi":"10.1080/10255842.2025.2515477","DOIUrl":null,"url":null,"abstract":"<p><p>\"Small sample size, high dimension\" data bring tremendous challenges to epilepsy Electroencephalography (EEG) data analysis and seizure onset prediction. Commonly, sparsity technique is introduced to tackle the problem. In this paper, we construct a indicator matrix acting as prior knowledge to assist logistic regression model with group lasso penalty to implement seizure prediction. The proposed method selects the feature at the group level, and it achieves the seizure prediction based on the important feature groups, recognizes the unknown clusters properly and performs well for both synthetic data following Bernoulli distribution and dataset CHB-MIT.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-11"},"PeriodicalIF":1.7000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prior knowledge guided logistic regression model with group lasso penalty for modeling epilepsy disease prediction.\",\"authors\":\"Xi Li, Yuanhua Qiao, Lijuan Duan, Jiang Du\",\"doi\":\"10.1080/10255842.2025.2515477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>\\\"Small sample size, high dimension\\\" data bring tremendous challenges to epilepsy Electroencephalography (EEG) data analysis and seizure onset prediction. Commonly, sparsity technique is introduced to tackle the problem. In this paper, we construct a indicator matrix acting as prior knowledge to assist logistic regression model with group lasso penalty to implement seizure prediction. The proposed method selects the feature at the group level, and it achieves the seizure prediction based on the important feature groups, recognizes the unknown clusters properly and performs well for both synthetic data following Bernoulli distribution and dataset CHB-MIT.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2025.2515477\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2515477","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

“小样本、高维”的数据给癫痫脑电图(EEG)数据分析和癫痫发作预测带来巨大挑战。通常,引入稀疏性技术来解决这个问题。在本文中,我们构建了一个指标矩阵作为先验知识来辅助具有组套索惩罚的逻辑回归模型来实现癫痫发作预测。该方法在组级选择特征,并基于重要特征组实现癫痫发作预测,正确识别未知聚类,对符合伯努利分布的合成数据和CHB-MIT数据集均表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prior knowledge guided logistic regression model with group lasso penalty for modeling epilepsy disease prediction.

"Small sample size, high dimension" data bring tremendous challenges to epilepsy Electroencephalography (EEG) data analysis and seizure onset prediction. Commonly, sparsity technique is introduced to tackle the problem. In this paper, we construct a indicator matrix acting as prior knowledge to assist logistic regression model with group lasso penalty to implement seizure prediction. The proposed method selects the feature at the group level, and it achieves the seizure prediction based on the important feature groups, recognizes the unknown clusters properly and performs well for both synthetic data following Bernoulli distribution and dataset CHB-MIT.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信