用于单分子力谱研究的广义聚焦离子束铣削策略调谐AFM悬臂梁的力学性能。

IF 1.7 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
Christopher B Hatchell, David R Jacobson
{"title":"用于单分子力谱研究的广义聚焦离子束铣削策略调谐AFM悬臂梁的力学性能。","authors":"Christopher B Hatchell, David R Jacobson","doi":"10.1063/5.0257032","DOIUrl":null,"url":null,"abstract":"<p><p>Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) enables the characterization of individual biological molecules through the application of mechanical force. The spatiotemporal resolution of such measurements depends greatly on the AFM cantilever that is used, specifically its stiffness, hydrodynamic drag, and material composition. Prior work has shown that focused ion beam (FIB) lithographic modification of small cantilevers can be used to lower the spring constant (and thus force noise) and drift while maintaining a relatively fast time response. Published methods for implementing such optimization rely on specific FIB instruments and cantilever types, limiting broad implementation of these methods to improve SMFS data quality. Here, we show that it is possible to achieve such optimized properties using generalized techniques applicable to a broader array of FIB instruments and starting from new types of cantilevers that are presently commercially available. Modified cantilevers exhibited a 90% reduction in spring constant, sub-pN force drift to tens of seconds, and a time response of ∼25 μs in the liquid environment relevant to biological measurements.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12166986/pdf/","citationCount":"0","resultStr":"{\"title\":\"Generalized focused-ion-beam milling strategy to tune mechanical properties of AFM cantilevers for single-molecule force spectroscopy studies.\",\"authors\":\"Christopher B Hatchell, David R Jacobson\",\"doi\":\"10.1063/5.0257032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) enables the characterization of individual biological molecules through the application of mechanical force. The spatiotemporal resolution of such measurements depends greatly on the AFM cantilever that is used, specifically its stiffness, hydrodynamic drag, and material composition. Prior work has shown that focused ion beam (FIB) lithographic modification of small cantilevers can be used to lower the spring constant (and thus force noise) and drift while maintaining a relatively fast time response. Published methods for implementing such optimization rely on specific FIB instruments and cantilever types, limiting broad implementation of these methods to improve SMFS data quality. Here, we show that it is possible to achieve such optimized properties using generalized techniques applicable to a broader array of FIB instruments and starting from new types of cantilevers that are presently commercially available. Modified cantilevers exhibited a 90% reduction in spring constant, sub-pN force drift to tens of seconds, and a time response of ∼25 μs in the liquid environment relevant to biological measurements.</p>\",\"PeriodicalId\":21111,\"journal\":{\"name\":\"Review of Scientific Instruments\",\"volume\":\"96 6\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12166986/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Review of Scientific Instruments\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0257032\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0257032","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

基于原子力显微镜(AFM)的单分子力谱(SMFS)可以通过应用机械力来表征单个生物分子。此类测量的时空分辨率在很大程度上取决于所使用的AFM悬臂梁,特别是其刚度、流体动力阻力和材料组成。先前的工作表明,聚焦离子束(FIB)光刻修饰小悬臂梁可以用来降低弹簧常数(从而降低力噪声)和漂移,同时保持相对较快的时间响应。已发表的实现这种优化的方法依赖于特定的FIB仪器和悬臂类型,限制了这些方法的广泛实施,以提高SMFS数据质量。在这里,我们表明,使用适用于更广泛的FIB仪器阵列的通用技术,并从目前商业上可用的新型悬臂梁开始,有可能实现这种优化性能。在与生物测量相关的液体环境中,改进悬臂梁的弹簧常数降低了90%,亚pn力漂移到数十秒,时间响应为~ 25 μs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized focused-ion-beam milling strategy to tune mechanical properties of AFM cantilevers for single-molecule force spectroscopy studies.

Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) enables the characterization of individual biological molecules through the application of mechanical force. The spatiotemporal resolution of such measurements depends greatly on the AFM cantilever that is used, specifically its stiffness, hydrodynamic drag, and material composition. Prior work has shown that focused ion beam (FIB) lithographic modification of small cantilevers can be used to lower the spring constant (and thus force noise) and drift while maintaining a relatively fast time response. Published methods for implementing such optimization rely on specific FIB instruments and cantilever types, limiting broad implementation of these methods to improve SMFS data quality. Here, we show that it is possible to achieve such optimized properties using generalized techniques applicable to a broader array of FIB instruments and starting from new types of cantilevers that are presently commercially available. Modified cantilevers exhibited a 90% reduction in spring constant, sub-pN force drift to tens of seconds, and a time response of ∼25 μs in the liquid environment relevant to biological measurements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信