{"title":"Arg-C超简化组蛋白制备的LC-MS/MS。","authors":"Palina Ryzhaya, Pavlína Pírek, Zbyněk Zdráhal, Gabriela Lochmanová","doi":"10.1021/acs.analchem.5c02238","DOIUrl":null,"url":null,"abstract":"<p><p>Arginine-specific cleavage is the primary method used to prepare lysine-rich histone proteins in bottom-up proteomics. As the Arg-C enzyme has demonstrated suboptimal specificity, cleavage at the carboxyl side of arginine residues is typically achieved through the chemical derivatization of lysines followed by trypsin digestion. Recent improvements in proteolytic enzymes are reflected in the introduction of Arg-C Ultra, a recombinant proteinase with a substantially improved digestion specificity. Here, using mammalian histone extract, we demonstrate that Arg-C Ultra facilitates histone preparation for LC-MS/MS. We show the performance of Arg-C Ultra in terms of digestion specificity, number of modified forms identified, and yield of quantitative information compared with Arg-C and trypsin digestion combined with chemical derivatization with trimethylacetic anhydride. Importantly, we show that chemical derivatization at the peptide level, i.e., after Arg-C Ultra digestion, is still necessary to improve the quantification of short histone peptidoforms as well as positional isomers.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":" ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arg-C Ultra Simplifies Histone Preparation for LC-MS/MS.\",\"authors\":\"Palina Ryzhaya, Pavlína Pírek, Zbyněk Zdráhal, Gabriela Lochmanová\",\"doi\":\"10.1021/acs.analchem.5c02238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Arginine-specific cleavage is the primary method used to prepare lysine-rich histone proteins in bottom-up proteomics. As the Arg-C enzyme has demonstrated suboptimal specificity, cleavage at the carboxyl side of arginine residues is typically achieved through the chemical derivatization of lysines followed by trypsin digestion. Recent improvements in proteolytic enzymes are reflected in the introduction of Arg-C Ultra, a recombinant proteinase with a substantially improved digestion specificity. Here, using mammalian histone extract, we demonstrate that Arg-C Ultra facilitates histone preparation for LC-MS/MS. We show the performance of Arg-C Ultra in terms of digestion specificity, number of modified forms identified, and yield of quantitative information compared with Arg-C and trypsin digestion combined with chemical derivatization with trimethylacetic anhydride. Importantly, we show that chemical derivatization at the peptide level, i.e., after Arg-C Ultra digestion, is still necessary to improve the quantification of short histone peptidoforms as well as positional isomers.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.5c02238\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c02238","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Arg-C Ultra Simplifies Histone Preparation for LC-MS/MS.
Arginine-specific cleavage is the primary method used to prepare lysine-rich histone proteins in bottom-up proteomics. As the Arg-C enzyme has demonstrated suboptimal specificity, cleavage at the carboxyl side of arginine residues is typically achieved through the chemical derivatization of lysines followed by trypsin digestion. Recent improvements in proteolytic enzymes are reflected in the introduction of Arg-C Ultra, a recombinant proteinase with a substantially improved digestion specificity. Here, using mammalian histone extract, we demonstrate that Arg-C Ultra facilitates histone preparation for LC-MS/MS. We show the performance of Arg-C Ultra in terms of digestion specificity, number of modified forms identified, and yield of quantitative information compared with Arg-C and trypsin digestion combined with chemical derivatization with trimethylacetic anhydride. Importantly, we show that chemical derivatization at the peptide level, i.e., after Arg-C Ultra digestion, is still necessary to improve the quantification of short histone peptidoforms as well as positional isomers.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.