Arg-C超简化组蛋白制备的LC-MS/MS。

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Palina Ryzhaya, Pavlína Pírek, Zbyněk Zdráhal, Gabriela Lochmanová
{"title":"Arg-C超简化组蛋白制备的LC-MS/MS。","authors":"Palina Ryzhaya, Pavlína Pírek, Zbyněk Zdráhal, Gabriela Lochmanová","doi":"10.1021/acs.analchem.5c02238","DOIUrl":null,"url":null,"abstract":"<p><p>Arginine-specific cleavage is the primary method used to prepare lysine-rich histone proteins in bottom-up proteomics. As the Arg-C enzyme has demonstrated suboptimal specificity, cleavage at the carboxyl side of arginine residues is typically achieved through the chemical derivatization of lysines followed by trypsin digestion. Recent improvements in proteolytic enzymes are reflected in the introduction of Arg-C Ultra, a recombinant proteinase with a substantially improved digestion specificity. Here, using mammalian histone extract, we demonstrate that Arg-C Ultra facilitates histone preparation for LC-MS/MS. We show the performance of Arg-C Ultra in terms of digestion specificity, number of modified forms identified, and yield of quantitative information compared with Arg-C and trypsin digestion combined with chemical derivatization with trimethylacetic anhydride. Importantly, we show that chemical derivatization at the peptide level, i.e., after Arg-C Ultra digestion, is still necessary to improve the quantification of short histone peptidoforms as well as positional isomers.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":" ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arg-C Ultra Simplifies Histone Preparation for LC-MS/MS.\",\"authors\":\"Palina Ryzhaya, Pavlína Pírek, Zbyněk Zdráhal, Gabriela Lochmanová\",\"doi\":\"10.1021/acs.analchem.5c02238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Arginine-specific cleavage is the primary method used to prepare lysine-rich histone proteins in bottom-up proteomics. As the Arg-C enzyme has demonstrated suboptimal specificity, cleavage at the carboxyl side of arginine residues is typically achieved through the chemical derivatization of lysines followed by trypsin digestion. Recent improvements in proteolytic enzymes are reflected in the introduction of Arg-C Ultra, a recombinant proteinase with a substantially improved digestion specificity. Here, using mammalian histone extract, we demonstrate that Arg-C Ultra facilitates histone preparation for LC-MS/MS. We show the performance of Arg-C Ultra in terms of digestion specificity, number of modified forms identified, and yield of quantitative information compared with Arg-C and trypsin digestion combined with chemical derivatization with trimethylacetic anhydride. Importantly, we show that chemical derivatization at the peptide level, i.e., after Arg-C Ultra digestion, is still necessary to improve the quantification of short histone peptidoforms as well as positional isomers.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.5c02238\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c02238","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

精氨酸特异性切割是自下而上蛋白质组学中制备富含赖氨酸的组蛋白的主要方法。由于Arg-C酶已显示出次优的特异性,精氨酸残基羧基侧的切割通常通过赖氨酸的化学衍生化和胰蛋白酶消化来实现。最近蛋白水解酶的改进反映在Arg-C Ultra的引入上,Arg-C Ultra是一种重组蛋白酶,具有显著提高的消化特异性。在这里,我们使用哺乳动物组蛋白提取物,证明Arg-C Ultra有利于组蛋白的LC-MS/MS制备。我们展示了Arg-C Ultra在消化特异性、确定的修饰形式数量和定量信息产量方面的性能,与Arg-C和胰蛋白酶消化结合三甲基乙酸酐的化学衍生化相比较。重要的是,我们证明了在肽水平上的化学衍生化,即经过Arg-C Ultra消化后,仍然需要提高短组蛋白肽形式和位置异构体的定量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Arg-C Ultra Simplifies Histone Preparation for LC-MS/MS.

Arg-C Ultra Simplifies Histone Preparation for LC-MS/MS.

Arginine-specific cleavage is the primary method used to prepare lysine-rich histone proteins in bottom-up proteomics. As the Arg-C enzyme has demonstrated suboptimal specificity, cleavage at the carboxyl side of arginine residues is typically achieved through the chemical derivatization of lysines followed by trypsin digestion. Recent improvements in proteolytic enzymes are reflected in the introduction of Arg-C Ultra, a recombinant proteinase with a substantially improved digestion specificity. Here, using mammalian histone extract, we demonstrate that Arg-C Ultra facilitates histone preparation for LC-MS/MS. We show the performance of Arg-C Ultra in terms of digestion specificity, number of modified forms identified, and yield of quantitative information compared with Arg-C and trypsin digestion combined with chemical derivatization with trimethylacetic anhydride. Importantly, we show that chemical derivatization at the peptide level, i.e., after Arg-C Ultra digestion, is still necessary to improve the quantification of short histone peptidoforms as well as positional isomers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信