Thomas D. Prevot, Michael Marcotte, Denis J. David, Indira Mendez-David, Md Yeunus Mian, James M. Cook, Jean-Philippe Guilloux, Etienne Sibille
{"title":"慢性α5-GABA-A受体增强促进小鼠成年海马神经发生","authors":"Thomas D. Prevot, Michael Marcotte, Denis J. David, Indira Mendez-David, Md Yeunus Mian, James M. Cook, Jean-Philippe Guilloux, Etienne Sibille","doi":"10.1002/hipo.70019","DOIUrl":null,"url":null,"abstract":"<p>Several lines of evidence implicate adult hippocampal neurogenesis (AHN) in cognitive functions, in mood- and anxiety-related behaviors, and in the therapeutic effects of antidepressants. Augmenting α5-γ-Aminobutyric acid type A (GABAA) receptor function has shown neurotrophic effects in stress and aged models, but its impact on mouse AHN remains unknown. Adult male 129S6/SvEvTac mice (<i>n</i> = 30 total) were treated for 6 weeks with GL-II-73, an α5-GABAA-R-positive allosteric modulator (α5-PAM) [30 mg/kg, per os, (P.O.)] or fluoxetine, a prototypical selective serotonin reuptake inhibitor known to increase AHN (18 mg/kg, P.O.). Proliferation in the subgranular zone of the dentate gyrus (DG) was assessed by the level of Ki67, a marker of dividing cells; survival of the young neurons was assessed by retention of the 5-Bromo-2´-Deoxyuridine (BrdU) nucleotide analog injected 2 weeks before sacrifice. Finally, maturation of young adult-born neurons was evaluated by measuring the fraction of BrdU-positive cells that are also DCX and/or NeuN-positive, capturing overall maturation and speed of maturation. Similarly to fluoxetine, a chronic treatment with GL-II-73 stimulated all stages of AHN, significantly increasing neuronal progenitor proliferation, survival of adult-born granule cells, and maturation of young neurons in the DG of the hippocampus. Chronic treatment with GL-II-73, a α5-GABAA-R-positive allosteric modulator, increased AHN, including cellular proliferation, survival, and maturation of newborn neurons, to levels comparable to fluoxetine.</p>","PeriodicalId":13171,"journal":{"name":"Hippocampus","volume":"35 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hipo.70019","citationCount":"0","resultStr":"{\"title\":\"Chronic α5-GABA-A Receptor Potentiation Promotes Mouse Adult Hippocampal Neurogenesis\",\"authors\":\"Thomas D. Prevot, Michael Marcotte, Denis J. David, Indira Mendez-David, Md Yeunus Mian, James M. Cook, Jean-Philippe Guilloux, Etienne Sibille\",\"doi\":\"10.1002/hipo.70019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Several lines of evidence implicate adult hippocampal neurogenesis (AHN) in cognitive functions, in mood- and anxiety-related behaviors, and in the therapeutic effects of antidepressants. Augmenting α5-γ-Aminobutyric acid type A (GABAA) receptor function has shown neurotrophic effects in stress and aged models, but its impact on mouse AHN remains unknown. Adult male 129S6/SvEvTac mice (<i>n</i> = 30 total) were treated for 6 weeks with GL-II-73, an α5-GABAA-R-positive allosteric modulator (α5-PAM) [30 mg/kg, per os, (P.O.)] or fluoxetine, a prototypical selective serotonin reuptake inhibitor known to increase AHN (18 mg/kg, P.O.). Proliferation in the subgranular zone of the dentate gyrus (DG) was assessed by the level of Ki67, a marker of dividing cells; survival of the young neurons was assessed by retention of the 5-Bromo-2´-Deoxyuridine (BrdU) nucleotide analog injected 2 weeks before sacrifice. Finally, maturation of young adult-born neurons was evaluated by measuring the fraction of BrdU-positive cells that are also DCX and/or NeuN-positive, capturing overall maturation and speed of maturation. Similarly to fluoxetine, a chronic treatment with GL-II-73 stimulated all stages of AHN, significantly increasing neuronal progenitor proliferation, survival of adult-born granule cells, and maturation of young neurons in the DG of the hippocampus. Chronic treatment with GL-II-73, a α5-GABAA-R-positive allosteric modulator, increased AHN, including cellular proliferation, survival, and maturation of newborn neurons, to levels comparable to fluoxetine.</p>\",\"PeriodicalId\":13171,\"journal\":{\"name\":\"Hippocampus\",\"volume\":\"35 4\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hipo.70019\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hippocampus\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hipo.70019\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hippocampus","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hipo.70019","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Several lines of evidence implicate adult hippocampal neurogenesis (AHN) in cognitive functions, in mood- and anxiety-related behaviors, and in the therapeutic effects of antidepressants. Augmenting α5-γ-Aminobutyric acid type A (GABAA) receptor function has shown neurotrophic effects in stress and aged models, but its impact on mouse AHN remains unknown. Adult male 129S6/SvEvTac mice (n = 30 total) were treated for 6 weeks with GL-II-73, an α5-GABAA-R-positive allosteric modulator (α5-PAM) [30 mg/kg, per os, (P.O.)] or fluoxetine, a prototypical selective serotonin reuptake inhibitor known to increase AHN (18 mg/kg, P.O.). Proliferation in the subgranular zone of the dentate gyrus (DG) was assessed by the level of Ki67, a marker of dividing cells; survival of the young neurons was assessed by retention of the 5-Bromo-2´-Deoxyuridine (BrdU) nucleotide analog injected 2 weeks before sacrifice. Finally, maturation of young adult-born neurons was evaluated by measuring the fraction of BrdU-positive cells that are also DCX and/or NeuN-positive, capturing overall maturation and speed of maturation. Similarly to fluoxetine, a chronic treatment with GL-II-73 stimulated all stages of AHN, significantly increasing neuronal progenitor proliferation, survival of adult-born granule cells, and maturation of young neurons in the DG of the hippocampus. Chronic treatment with GL-II-73, a α5-GABAA-R-positive allosteric modulator, increased AHN, including cellular proliferation, survival, and maturation of newborn neurons, to levels comparable to fluoxetine.
期刊介绍:
Hippocampus provides a forum for the exchange of current information between investigators interested in the neurobiology of the hippocampal formation and related structures. While the relationships of submitted papers to the hippocampal formation will be evaluated liberally, the substance of appropriate papers should deal with the hippocampal formation per se or with the interaction between the hippocampal formation and other brain regions. The scope of Hippocampus is wide: single and multidisciplinary experimental studies from all fields of basic science, theoretical papers, papers dealing with hippocampal preparations as models for understanding the central nervous system, and clinical studies will be considered for publication. The Editor especially encourages the submission of papers that contribute to a functional understanding of the hippocampal formation.