Jean Michel Fernandes , Olivia Ménard , Marie-Françoise Cochet , Jordane Ossemond , António A. Vicente , Ana C. Pinheiro , Didier Dupont
{"title":"生理阶段对强化酸奶α-生育酚生物可及性的影响采用模拟年轻人和老年人胃肠状况的动态体外消化法","authors":"Jean Michel Fernandes , Olivia Ménard , Marie-Françoise Cochet , Jordane Ossemond , António A. Vicente , Ana C. Pinheiro , Didier Dupont","doi":"10.1016/j.foodres.2025.116751","DOIUrl":null,"url":null,"abstract":"<div><div>Age-related physiological decline negatively impacts nutrient digestion and absorption, making older adults more susceptible to diet-related diseases. Fortified and functional foods are promising strategies to enhance the delivery of nutraceuticals and bioactive compounds. However, understanding how these foods behave under age-specific gastrointestinal conditions is essential. Despite the relevance of <em>in vitro</em> gastrointestinal models, there is a lack of dynamic systems that accurately replicate the digestive physiology of older adults.</div><div>This study employed the DIDGI® dynamic <em>in vitro</em> gastrointestinal model, following the INFOGEST guidelines, to simulate the digestive processes of both young and old adults. Fortified yogurts containing α-tocopherol encapsulated in oil-in-water nanoemulsions were tested to assess the impact of age-related digestive conditions on digestibility and release kinetics of α-tocopherol.</div><div>The intestinal recovery of α-tocopherol was significantly higher in the young adult model (97.3 ± 5.9 %) compared to the older adult model (79.8 ± 5.2 %). Although bioaccessibility during the intestinal phase was comparable in both models (ranging from 60.54 ± 7.38 % to 78.90 ± 8.88 %), the overall estimated bioavailability was significantly greater in the young adult model (67.76 ± 7.15 %) than in the older adult model (57.59 ± 4.50 %). Distinct release kinetics were also observed between models, indicating that physiological stage significantly affects nutrient release and absorption. This study demonstrates that aging alters digestive function, impacting the bioavailability of encapsulated bioactives.</div><div>These findings underscore the importance of developing age-specific fortified foods and digestion models to optimize nutritional support for older adults.</div></div>","PeriodicalId":323,"journal":{"name":"Food Research International","volume":"217 ","pages":"Article 116751"},"PeriodicalIF":7.0000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of the physiological stage on the bioaccessibility of α-tocopherol from fortified yogurts using dynamic in vitro digestion simulating young and old adults' gastrointestinal conditions\",\"authors\":\"Jean Michel Fernandes , Olivia Ménard , Marie-Françoise Cochet , Jordane Ossemond , António A. Vicente , Ana C. Pinheiro , Didier Dupont\",\"doi\":\"10.1016/j.foodres.2025.116751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Age-related physiological decline negatively impacts nutrient digestion and absorption, making older adults more susceptible to diet-related diseases. Fortified and functional foods are promising strategies to enhance the delivery of nutraceuticals and bioactive compounds. However, understanding how these foods behave under age-specific gastrointestinal conditions is essential. Despite the relevance of <em>in vitro</em> gastrointestinal models, there is a lack of dynamic systems that accurately replicate the digestive physiology of older adults.</div><div>This study employed the DIDGI® dynamic <em>in vitro</em> gastrointestinal model, following the INFOGEST guidelines, to simulate the digestive processes of both young and old adults. Fortified yogurts containing α-tocopherol encapsulated in oil-in-water nanoemulsions were tested to assess the impact of age-related digestive conditions on digestibility and release kinetics of α-tocopherol.</div><div>The intestinal recovery of α-tocopherol was significantly higher in the young adult model (97.3 ± 5.9 %) compared to the older adult model (79.8 ± 5.2 %). Although bioaccessibility during the intestinal phase was comparable in both models (ranging from 60.54 ± 7.38 % to 78.90 ± 8.88 %), the overall estimated bioavailability was significantly greater in the young adult model (67.76 ± 7.15 %) than in the older adult model (57.59 ± 4.50 %). Distinct release kinetics were also observed between models, indicating that physiological stage significantly affects nutrient release and absorption. This study demonstrates that aging alters digestive function, impacting the bioavailability of encapsulated bioactives.</div><div>These findings underscore the importance of developing age-specific fortified foods and digestion models to optimize nutritional support for older adults.</div></div>\",\"PeriodicalId\":323,\"journal\":{\"name\":\"Food Research International\",\"volume\":\"217 \",\"pages\":\"Article 116751\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Research International\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0963996925010890\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Research International","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963996925010890","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Impact of the physiological stage on the bioaccessibility of α-tocopherol from fortified yogurts using dynamic in vitro digestion simulating young and old adults' gastrointestinal conditions
Age-related physiological decline negatively impacts nutrient digestion and absorption, making older adults more susceptible to diet-related diseases. Fortified and functional foods are promising strategies to enhance the delivery of nutraceuticals and bioactive compounds. However, understanding how these foods behave under age-specific gastrointestinal conditions is essential. Despite the relevance of in vitro gastrointestinal models, there is a lack of dynamic systems that accurately replicate the digestive physiology of older adults.
This study employed the DIDGI® dynamic in vitro gastrointestinal model, following the INFOGEST guidelines, to simulate the digestive processes of both young and old adults. Fortified yogurts containing α-tocopherol encapsulated in oil-in-water nanoemulsions were tested to assess the impact of age-related digestive conditions on digestibility and release kinetics of α-tocopherol.
The intestinal recovery of α-tocopherol was significantly higher in the young adult model (97.3 ± 5.9 %) compared to the older adult model (79.8 ± 5.2 %). Although bioaccessibility during the intestinal phase was comparable in both models (ranging from 60.54 ± 7.38 % to 78.90 ± 8.88 %), the overall estimated bioavailability was significantly greater in the young adult model (67.76 ± 7.15 %) than in the older adult model (57.59 ± 4.50 %). Distinct release kinetics were also observed between models, indicating that physiological stage significantly affects nutrient release and absorption. This study demonstrates that aging alters digestive function, impacting the bioavailability of encapsulated bioactives.
These findings underscore the importance of developing age-specific fortified foods and digestion models to optimize nutritional support for older adults.
期刊介绍:
Food Research International serves as a rapid dissemination platform for significant and impactful research in food science, technology, engineering, and nutrition. The journal focuses on publishing novel, high-quality, and high-impact review papers, original research papers, and letters to the editors across various disciplines in the science and technology of food. Additionally, it follows a policy of publishing special issues on topical and emergent subjects in food research or related areas. Selected, peer-reviewed papers from scientific meetings, workshops, and conferences on the science, technology, and engineering of foods are also featured in special issues.