Sofia Sheikh, Brent Vela, Pejman Honarmandi, Peter Morcos, David Shoukr, Abdelrahman Mostafa Kotb, Ibrahim Karaman, Alaa Elwany, Raymundo Arróyave
{"title":"金属增材制造的高通量合金和工艺设计","authors":"Sofia Sheikh, Brent Vela, Pejman Honarmandi, Peter Morcos, David Shoukr, Abdelrahman Mostafa Kotb, Ibrahim Karaman, Alaa Elwany, Raymundo Arróyave","doi":"10.1038/s41524-025-01670-x","DOIUrl":null,"url":null,"abstract":"<p>Many engineering alloys originally designed for conventional manufacturing lack considerations for additive manufacturing (AM), presenting opportunities for novel alloy designs. Evaluating alloy printability requires extensive analysis of chemical composition and processing conditions. The complexity of experimental exploration drives the need for high-throughput computational frameworks. This study introduces a framework that integrates material properties, processing parameters, and melt pool profiles from three thermal models to assess process-induced defects, such as lack-of-fusion, balling, and keyholing. A deep learning surrogate model accelerates the printability assessment by 1000 times without losing accuracy. We validate the framework with printability maps for the equiatomic CoCrFeMnNi system and apply it to explore printable alloys in the Co-Cr-Fe-Mn-Ni high-entropy alloy space. Ensemble probabilistic printability maps further provide insights into defect likelihood and uncertainty, enhancing alloy design for AM by efficiently navigating vast design spaces.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"12 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-throughput alloy and process design for metal additive manufacturing\",\"authors\":\"Sofia Sheikh, Brent Vela, Pejman Honarmandi, Peter Morcos, David Shoukr, Abdelrahman Mostafa Kotb, Ibrahim Karaman, Alaa Elwany, Raymundo Arróyave\",\"doi\":\"10.1038/s41524-025-01670-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Many engineering alloys originally designed for conventional manufacturing lack considerations for additive manufacturing (AM), presenting opportunities for novel alloy designs. Evaluating alloy printability requires extensive analysis of chemical composition and processing conditions. The complexity of experimental exploration drives the need for high-throughput computational frameworks. This study introduces a framework that integrates material properties, processing parameters, and melt pool profiles from three thermal models to assess process-induced defects, such as lack-of-fusion, balling, and keyholing. A deep learning surrogate model accelerates the printability assessment by 1000 times without losing accuracy. We validate the framework with printability maps for the equiatomic CoCrFeMnNi system and apply it to explore printable alloys in the Co-Cr-Fe-Mn-Ni high-entropy alloy space. Ensemble probabilistic printability maps further provide insights into defect likelihood and uncertainty, enhancing alloy design for AM by efficiently navigating vast design spaces.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01670-x\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01670-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
High-throughput alloy and process design for metal additive manufacturing
Many engineering alloys originally designed for conventional manufacturing lack considerations for additive manufacturing (AM), presenting opportunities for novel alloy designs. Evaluating alloy printability requires extensive analysis of chemical composition and processing conditions. The complexity of experimental exploration drives the need for high-throughput computational frameworks. This study introduces a framework that integrates material properties, processing parameters, and melt pool profiles from three thermal models to assess process-induced defects, such as lack-of-fusion, balling, and keyholing. A deep learning surrogate model accelerates the printability assessment by 1000 times without losing accuracy. We validate the framework with printability maps for the equiatomic CoCrFeMnNi system and apply it to explore printable alloys in the Co-Cr-Fe-Mn-Ni high-entropy alloy space. Ensemble probabilistic printability maps further provide insights into defect likelihood and uncertainty, enhancing alloy design for AM by efficiently navigating vast design spaces.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.