基于共焦相位衍射法的光纤超薄介质膜厚度表征

IF 4.6 2区 物理与天体物理 Q1 OPTICS
Anıl Karatay, Enes Ataç
{"title":"基于共焦相位衍射法的光纤超薄介质膜厚度表征","authors":"Anıl Karatay,&nbsp;Enes Ataç","doi":"10.1016/j.optlastec.2025.113299","DOIUrl":null,"url":null,"abstract":"<div><div>Characterizing the thickness of thin dielectric films is crucial in fiber optic sensor technologies due to their significant impact on sensor performance. However, non-destructive thickness characterization of films in the range of tens of nanometers, particularly on non-planar surfaces, is often a challenging, complex, and tedious process. In addition, the measurements often need highly calibrated devices under the control of specialists. In this paper, we propose a novel, non-destructive, and practical method for characterizing the thickness of ultra-thin (<span><math><mo>&lt;</mo></math></span>100 nm) curved transparent dielectric films using homodyne detection of the confocal phase diffraction. The numerical simulations and experimental results show that suppressing stray light improves the influence of thickness information in the diffracted field. This significantly enhances the system’s sensitivity to nanometer-scale variations in dielectric film thickness, especially when integrated with a coherent detection scheme. According to the results, the film thickness can be precisely measured within a few nanometers, making it highly significant and promising for cost-effective optical metrology applications.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"191 ","pages":"Article 113299"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homodyne detection based confocal phase diffraction method for thickness characterization of ultra-thin dielectric films coated on optical fibers\",\"authors\":\"Anıl Karatay,&nbsp;Enes Ataç\",\"doi\":\"10.1016/j.optlastec.2025.113299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Characterizing the thickness of thin dielectric films is crucial in fiber optic sensor technologies due to their significant impact on sensor performance. However, non-destructive thickness characterization of films in the range of tens of nanometers, particularly on non-planar surfaces, is often a challenging, complex, and tedious process. In addition, the measurements often need highly calibrated devices under the control of specialists. In this paper, we propose a novel, non-destructive, and practical method for characterizing the thickness of ultra-thin (<span><math><mo>&lt;</mo></math></span>100 nm) curved transparent dielectric films using homodyne detection of the confocal phase diffraction. The numerical simulations and experimental results show that suppressing stray light improves the influence of thickness information in the diffracted field. This significantly enhances the system’s sensitivity to nanometer-scale variations in dielectric film thickness, especially when integrated with a coherent detection scheme. According to the results, the film thickness can be precisely measured within a few nanometers, making it highly significant and promising for cost-effective optical metrology applications.</div></div>\",\"PeriodicalId\":19511,\"journal\":{\"name\":\"Optics and Laser Technology\",\"volume\":\"191 \",\"pages\":\"Article 113299\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Laser Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399225008904\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399225008904","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

在光纤传感器技术中,表征介质薄膜的厚度是至关重要的,因为它对传感器的性能有重要的影响。然而,在几十纳米范围内的薄膜的非破坏性厚度表征,特别是在非平面表面,往往是一个具有挑战性的,复杂的,繁琐的过程。此外,测量通常需要在专家控制下高度校准的设备。在本文中,我们提出了一种新的,非破坏性的,实用的方法来表征超薄(<100 nm)弯曲透明介质薄膜的厚度,使用共焦相位衍射的同差检测。数值模拟和实验结果表明,抑制杂散光可以改善衍射场中厚度信息的影响。这大大提高了系统对纳米尺度介电膜厚度变化的灵敏度,特别是当与相干检测方案集成时。根据研究结果,薄膜厚度可以精确测量在几纳米内,这使得它在具有成本效益的光学计量应用中具有重要意义和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homodyne detection based confocal phase diffraction method for thickness characterization of ultra-thin dielectric films coated on optical fibers
Characterizing the thickness of thin dielectric films is crucial in fiber optic sensor technologies due to their significant impact on sensor performance. However, non-destructive thickness characterization of films in the range of tens of nanometers, particularly on non-planar surfaces, is often a challenging, complex, and tedious process. In addition, the measurements often need highly calibrated devices under the control of specialists. In this paper, we propose a novel, non-destructive, and practical method for characterizing the thickness of ultra-thin (<100 nm) curved transparent dielectric films using homodyne detection of the confocal phase diffraction. The numerical simulations and experimental results show that suppressing stray light improves the influence of thickness information in the diffracted field. This significantly enhances the system’s sensitivity to nanometer-scale variations in dielectric film thickness, especially when integrated with a coherent detection scheme. According to the results, the film thickness can be precisely measured within a few nanometers, making it highly significant and promising for cost-effective optical metrology applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
10.00%
发文量
1060
审稿时长
3.4 months
期刊介绍: Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication. The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas: •development in all types of lasers •developments in optoelectronic devices and photonics •developments in new photonics and optical concepts •developments in conventional optics, optical instruments and components •techniques of optical metrology, including interferometry and optical fibre sensors •LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow •applications of lasers to materials processing, optical NDT display (including holography) and optical communication •research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume) •developments in optical computing and optical information processing •developments in new optical materials •developments in new optical characterization methods and techniques •developments in quantum optics •developments in light assisted micro and nanofabrication methods and techniques •developments in nanophotonics and biophotonics •developments in imaging processing and systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信