{"title":"基于共焦相位衍射法的光纤超薄介质膜厚度表征","authors":"Anıl Karatay, Enes Ataç","doi":"10.1016/j.optlastec.2025.113299","DOIUrl":null,"url":null,"abstract":"<div><div>Characterizing the thickness of thin dielectric films is crucial in fiber optic sensor technologies due to their significant impact on sensor performance. However, non-destructive thickness characterization of films in the range of tens of nanometers, particularly on non-planar surfaces, is often a challenging, complex, and tedious process. In addition, the measurements often need highly calibrated devices under the control of specialists. In this paper, we propose a novel, non-destructive, and practical method for characterizing the thickness of ultra-thin (<span><math><mo><</mo></math></span>100 nm) curved transparent dielectric films using homodyne detection of the confocal phase diffraction. The numerical simulations and experimental results show that suppressing stray light improves the influence of thickness information in the diffracted field. This significantly enhances the system’s sensitivity to nanometer-scale variations in dielectric film thickness, especially when integrated with a coherent detection scheme. According to the results, the film thickness can be precisely measured within a few nanometers, making it highly significant and promising for cost-effective optical metrology applications.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"191 ","pages":"Article 113299"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homodyne detection based confocal phase diffraction method for thickness characterization of ultra-thin dielectric films coated on optical fibers\",\"authors\":\"Anıl Karatay, Enes Ataç\",\"doi\":\"10.1016/j.optlastec.2025.113299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Characterizing the thickness of thin dielectric films is crucial in fiber optic sensor technologies due to their significant impact on sensor performance. However, non-destructive thickness characterization of films in the range of tens of nanometers, particularly on non-planar surfaces, is often a challenging, complex, and tedious process. In addition, the measurements often need highly calibrated devices under the control of specialists. In this paper, we propose a novel, non-destructive, and practical method for characterizing the thickness of ultra-thin (<span><math><mo><</mo></math></span>100 nm) curved transparent dielectric films using homodyne detection of the confocal phase diffraction. The numerical simulations and experimental results show that suppressing stray light improves the influence of thickness information in the diffracted field. This significantly enhances the system’s sensitivity to nanometer-scale variations in dielectric film thickness, especially when integrated with a coherent detection scheme. According to the results, the film thickness can be precisely measured within a few nanometers, making it highly significant and promising for cost-effective optical metrology applications.</div></div>\",\"PeriodicalId\":19511,\"journal\":{\"name\":\"Optics and Laser Technology\",\"volume\":\"191 \",\"pages\":\"Article 113299\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Laser Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399225008904\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399225008904","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Homodyne detection based confocal phase diffraction method for thickness characterization of ultra-thin dielectric films coated on optical fibers
Characterizing the thickness of thin dielectric films is crucial in fiber optic sensor technologies due to their significant impact on sensor performance. However, non-destructive thickness characterization of films in the range of tens of nanometers, particularly on non-planar surfaces, is often a challenging, complex, and tedious process. In addition, the measurements often need highly calibrated devices under the control of specialists. In this paper, we propose a novel, non-destructive, and practical method for characterizing the thickness of ultra-thin (100 nm) curved transparent dielectric films using homodyne detection of the confocal phase diffraction. The numerical simulations and experimental results show that suppressing stray light improves the influence of thickness information in the diffracted field. This significantly enhances the system’s sensitivity to nanometer-scale variations in dielectric film thickness, especially when integrated with a coherent detection scheme. According to the results, the film thickness can be precisely measured within a few nanometers, making it highly significant and promising for cost-effective optical metrology applications.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems