Liang Chen, Yingying Song, Yurou Huang, Junjie Hu, Yan Meng, Ming Yuan, Guohua Zheng, Xuanbin Wang, Cong Zhang, Zhenpeng Qiu
{"title":"山茱萸提取物通过维持肠道微生态和脂质代谢的稳态来改善果糖诱导的小鼠肝脏脂肪变性","authors":"Liang Chen, Yingying Song, Yurou Huang, Junjie Hu, Yan Meng, Ming Yuan, Guohua Zheng, Xuanbin Wang, Cong Zhang, Zhenpeng Qiu","doi":"10.1002/fsn3.70425","DOIUrl":null,"url":null,"abstract":"<p><i>Cornus officinalis</i> Sieb. et Zucc. (<i>Cornus officinalis</i>), an edible natural plant fruit, has beneficial effects on a multitude of metabolic diseases, but the mechanism to improve hepatic steatosis remains elusive. In this study, the curative effect of <i>Cornus officinalis</i> extract (COE) is evaluated in a fructose-induced NAFLD mouse model using biochemical indicators monitoring, histological staining, 16S rRNA sequencing analysis, and fecal microbiota transplantation. Our results showed that COE attenuates hepatic steatosis in fructose-fed mice. Mechanistically, COE repairs intestinal barrier damage and gut flora dysbiosis to suppress proinflammatory microbe-derived metabolite transportation to the liver, thus inhibiting the hepatic inflammation and lipid metabolic dysfunction. Notably, transplantation of fecal microbiota isolated from the fructose-fed mice could reverse the beneficial effect of COE on attenuating NAFLD. Therefore, our study demonstrates that COE delays the progression of fructose-driven NAFLD by suppressing lipid metabolic dysfunction and gut microbiota-mediated liver inflammation, highlighting the potential of <i>C. officinalis</i> as a resource for the treatment of NAFLD drugs.</p>","PeriodicalId":12418,"journal":{"name":"Food Science & Nutrition","volume":"13 6","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fsn3.70425","citationCount":"0","resultStr":"{\"title\":\"Cornus officinalis Extract Ameliorates Fructose-Induced Hepatic Steatosis in Mice by Sustaining the Homeostasis of Intestinal Microecology and Lipid Metabolism\",\"authors\":\"Liang Chen, Yingying Song, Yurou Huang, Junjie Hu, Yan Meng, Ming Yuan, Guohua Zheng, Xuanbin Wang, Cong Zhang, Zhenpeng Qiu\",\"doi\":\"10.1002/fsn3.70425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Cornus officinalis</i> Sieb. et Zucc. (<i>Cornus officinalis</i>), an edible natural plant fruit, has beneficial effects on a multitude of metabolic diseases, but the mechanism to improve hepatic steatosis remains elusive. In this study, the curative effect of <i>Cornus officinalis</i> extract (COE) is evaluated in a fructose-induced NAFLD mouse model using biochemical indicators monitoring, histological staining, 16S rRNA sequencing analysis, and fecal microbiota transplantation. Our results showed that COE attenuates hepatic steatosis in fructose-fed mice. Mechanistically, COE repairs intestinal barrier damage and gut flora dysbiosis to suppress proinflammatory microbe-derived metabolite transportation to the liver, thus inhibiting the hepatic inflammation and lipid metabolic dysfunction. Notably, transplantation of fecal microbiota isolated from the fructose-fed mice could reverse the beneficial effect of COE on attenuating NAFLD. Therefore, our study demonstrates that COE delays the progression of fructose-driven NAFLD by suppressing lipid metabolic dysfunction and gut microbiota-mediated liver inflammation, highlighting the potential of <i>C. officinalis</i> as a resource for the treatment of NAFLD drugs.</p>\",\"PeriodicalId\":12418,\"journal\":{\"name\":\"Food Science & Nutrition\",\"volume\":\"13 6\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fsn3.70425\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Science & Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fsn3.70425\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science & Nutrition","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fsn3.70425","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Cornus officinalis Extract Ameliorates Fructose-Induced Hepatic Steatosis in Mice by Sustaining the Homeostasis of Intestinal Microecology and Lipid Metabolism
Cornus officinalis Sieb. et Zucc. (Cornus officinalis), an edible natural plant fruit, has beneficial effects on a multitude of metabolic diseases, but the mechanism to improve hepatic steatosis remains elusive. In this study, the curative effect of Cornus officinalis extract (COE) is evaluated in a fructose-induced NAFLD mouse model using biochemical indicators monitoring, histological staining, 16S rRNA sequencing analysis, and fecal microbiota transplantation. Our results showed that COE attenuates hepatic steatosis in fructose-fed mice. Mechanistically, COE repairs intestinal barrier damage and gut flora dysbiosis to suppress proinflammatory microbe-derived metabolite transportation to the liver, thus inhibiting the hepatic inflammation and lipid metabolic dysfunction. Notably, transplantation of fecal microbiota isolated from the fructose-fed mice could reverse the beneficial effect of COE on attenuating NAFLD. Therefore, our study demonstrates that COE delays the progression of fructose-driven NAFLD by suppressing lipid metabolic dysfunction and gut microbiota-mediated liver inflammation, highlighting the potential of C. officinalis as a resource for the treatment of NAFLD drugs.
期刊介绍:
Food Science & Nutrition is the peer-reviewed journal for rapid dissemination of research in all areas of food science and nutrition. The Journal will consider submissions of quality papers describing the results of fundamental and applied research related to all aspects of human food and nutrition, as well as interdisciplinary research that spans these two fields.