多模态呼吸暂停检测:通过卷积神经网络和STFT分析脑电图、心电图和鼻信号来解决创新中的关键挑战。

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Mandana Sadat Ghafourian, Amin Noori, Shaghayegh Taghipour, Amin Ramezani
{"title":"多模态呼吸暂停检测:通过卷积神经网络和STFT分析脑电图、心电图和鼻信号来解决创新中的关键挑战。","authors":"Mandana Sadat Ghafourian, Amin Noori, Shaghayegh Taghipour, Amin Ramezani","doi":"10.1080/10255842.2025.2510367","DOIUrl":null,"url":null,"abstract":"<p><p>Sleep apnea is a prevalent chronic disorder posing significant health risks, requiring prompt diagnosis for effective treatment. This study introduces a reliable and efficient method using simultaneous electroencephalography (EEG), electrocardiography (ECG), and nasal airflow signals to distinguish apnea subtypes. The approach involves signal preprocessing with bandpass filtering and applying the short-time Fourier transform (STFT) to create spectrograms for 30-second segments. A convolutional neural network (CNN) classifies normal events, obstructive sleep apnea (OSA), central sleep apnea (CSA), and hypopnea. Results show our method achieved 98.01% accuracy, highlighting its potential to enhance personalized care for sleep apnea patients.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-11"},"PeriodicalIF":1.7000,"publicationDate":"2025-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal apnea detection: advancements through convolutional neural networks and STFT analysis of EEG, ECG, and nasal signals to tackle key challenges in innovation.\",\"authors\":\"Mandana Sadat Ghafourian, Amin Noori, Shaghayegh Taghipour, Amin Ramezani\",\"doi\":\"10.1080/10255842.2025.2510367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sleep apnea is a prevalent chronic disorder posing significant health risks, requiring prompt diagnosis for effective treatment. This study introduces a reliable and efficient method using simultaneous electroencephalography (EEG), electrocardiography (ECG), and nasal airflow signals to distinguish apnea subtypes. The approach involves signal preprocessing with bandpass filtering and applying the short-time Fourier transform (STFT) to create spectrograms for 30-second segments. A convolutional neural network (CNN) classifies normal events, obstructive sleep apnea (OSA), central sleep apnea (CSA), and hypopnea. Results show our method achieved 98.01% accuracy, highlighting its potential to enhance personalized care for sleep apnea patients.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2025.2510367\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2510367","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

睡眠呼吸暂停是一种普遍存在的慢性疾病,对健康构成重大威胁,需要及时诊断才能有效治疗。本研究介绍了一种可靠有效的方法,通过同时使用脑电图(EEG)、心电图(ECG)和鼻气流信号来区分呼吸暂停亚型。该方法包括带通滤波的信号预处理,并应用短时傅立叶变换(STFT)创建30秒片段的频谱图。卷积神经网络(CNN)对正常事件、阻塞性睡眠呼吸暂停(OSA)、中枢性睡眠呼吸暂停(CSA)和低通气进行分类。结果表明,该方法的准确率为98.01%,显示了其在提高睡眠呼吸暂停患者个性化护理方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal apnea detection: advancements through convolutional neural networks and STFT analysis of EEG, ECG, and nasal signals to tackle key challenges in innovation.

Sleep apnea is a prevalent chronic disorder posing significant health risks, requiring prompt diagnosis for effective treatment. This study introduces a reliable and efficient method using simultaneous electroencephalography (EEG), electrocardiography (ECG), and nasal airflow signals to distinguish apnea subtypes. The approach involves signal preprocessing with bandpass filtering and applying the short-time Fourier transform (STFT) to create spectrograms for 30-second segments. A convolutional neural network (CNN) classifies normal events, obstructive sleep apnea (OSA), central sleep apnea (CSA), and hypopnea. Results show our method achieved 98.01% accuracy, highlighting its potential to enhance personalized care for sleep apnea patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信