利用时间和功能连接特征融合解码基于脑电图的认知负荷。

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jiaguan Han, Gege Zhan, Lu Wang, Dida Liang, Huatian Zhang, Lihua Zhang, Xiaoyang Kang
{"title":"利用时间和功能连接特征融合解码基于脑电图的认知负荷。","authors":"Jiaguan Han, Gege Zhan, Lu Wang, Dida Liang, Huatian Zhang, Lihua Zhang, Xiaoyang Kang","doi":"10.1080/10255842.2025.2514132","DOIUrl":null,"url":null,"abstract":"<p><p>Evaluating cognitive load using electroencephalogram (EEG) signals is a crucial research area in the field of Brain-Computer Interfaces (BCI). However, achieving high accuracy and generalization in feature extraction and classification for cognitive load assessment remains a challenge, primarily due to the low signal-to-noise ratio of EEG signals and the inter-individual variability in EEG data. In this study, we propose a novel deep learning architecture that integrates temporal information features and functional connectivity features to enhance EEG signal analysis. Functional connectivity features capture inter-channel information, while temporal features are extracted from continuous signal segments using a Long Short-Term Memory (LSTM) network enhanced with an attention mechanism. The fusion strategy combines these two information streams to leverage their complementary strengths, resulting in improved classification performance. We evaluated our architecture on two publicly available datasets, and the results demonstrate its robustness in cognitive load recognition. Achieving performance comparable to the best existing methods on two public datasets. Ablation studies further substantiate the contributions of each module, demonstrating the importance of combining temporal and functional connectivity features for optimal results. These findings underscore the robustness and versatility of the proposed approach, paving the way for more effective EEG-based BCI applications.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-16"},"PeriodicalIF":1.7000,"publicationDate":"2025-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding EEG-based cognitive load using fusion of temporal and functional connectivity features.\",\"authors\":\"Jiaguan Han, Gege Zhan, Lu Wang, Dida Liang, Huatian Zhang, Lihua Zhang, Xiaoyang Kang\",\"doi\":\"10.1080/10255842.2025.2514132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Evaluating cognitive load using electroencephalogram (EEG) signals is a crucial research area in the field of Brain-Computer Interfaces (BCI). However, achieving high accuracy and generalization in feature extraction and classification for cognitive load assessment remains a challenge, primarily due to the low signal-to-noise ratio of EEG signals and the inter-individual variability in EEG data. In this study, we propose a novel deep learning architecture that integrates temporal information features and functional connectivity features to enhance EEG signal analysis. Functional connectivity features capture inter-channel information, while temporal features are extracted from continuous signal segments using a Long Short-Term Memory (LSTM) network enhanced with an attention mechanism. The fusion strategy combines these two information streams to leverage their complementary strengths, resulting in improved classification performance. We evaluated our architecture on two publicly available datasets, and the results demonstrate its robustness in cognitive load recognition. Achieving performance comparable to the best existing methods on two public datasets. Ablation studies further substantiate the contributions of each module, demonstrating the importance of combining temporal and functional connectivity features for optimal results. These findings underscore the robustness and versatility of the proposed approach, paving the way for more effective EEG-based BCI applications.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1-16\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2025.2514132\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2514132","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

利用脑电信号评估认知负荷是脑机接口(BCI)领域的一个重要研究方向。然而,由于脑电信号的低信噪比和脑电信号数据的个体间变异性,在认知负荷评估的特征提取和分类中实现高精度和泛化仍然是一个挑战。在这项研究中,我们提出了一种新的深度学习架构,该架构集成了时间信息特征和功能连接特征,以增强脑电信号的分析。功能连通性特征捕获通道间信息,而时间特征则使用增强了注意机制的长短期记忆(LSTM)网络从连续信号片段中提取。融合策略将这两种信息流结合起来,利用它们的互补优势,从而提高分类性能。我们在两个公开可用的数据集上评估了我们的架构,结果证明了它在认知负荷识别方面的鲁棒性。在两个公共数据集上实现与现有最佳方法相当的性能。消融研究进一步证实了每个模块的贡献,证明了将时间和功能连接特征结合起来以获得最佳结果的重要性。这些发现强调了所提出方法的健壮性和多功能性,为更有效的基于脑电图的脑机接口应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoding EEG-based cognitive load using fusion of temporal and functional connectivity features.

Evaluating cognitive load using electroencephalogram (EEG) signals is a crucial research area in the field of Brain-Computer Interfaces (BCI). However, achieving high accuracy and generalization in feature extraction and classification for cognitive load assessment remains a challenge, primarily due to the low signal-to-noise ratio of EEG signals and the inter-individual variability in EEG data. In this study, we propose a novel deep learning architecture that integrates temporal information features and functional connectivity features to enhance EEG signal analysis. Functional connectivity features capture inter-channel information, while temporal features are extracted from continuous signal segments using a Long Short-Term Memory (LSTM) network enhanced with an attention mechanism. The fusion strategy combines these two information streams to leverage their complementary strengths, resulting in improved classification performance. We evaluated our architecture on two publicly available datasets, and the results demonstrate its robustness in cognitive load recognition. Achieving performance comparable to the best existing methods on two public datasets. Ablation studies further substantiate the contributions of each module, demonstrating the importance of combining temporal and functional connectivity features for optimal results. These findings underscore the robustness and versatility of the proposed approach, paving the way for more effective EEG-based BCI applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信