{"title":"大电流脉冲晶闸管开关电侵蚀加速失效机理研究","authors":"Shiyun Xiao;Yi Liu;Liuxia Li;Fuchang Lin;Yunxin Miao","doi":"10.1109/TDMR.2025.3565618","DOIUrl":null,"url":null,"abstract":"High-current pulse thyristor-based switches operate under high-current pulse conditions and are subjected to coupled electromagnetic-thermomechanical stresses, resulting in the progressive development of thermal fatigue-induced failure mechanisms. The study revealed that localized overheating triggers electrical erosion of the aluminum layer, which further accelerates the thermal fatigue failure of high-current switches. To investigate this phenomenon, a microscopic model of the silicon-aluminum interface incorporating surface roughness effects was developed to quantify the transient temperature rise and electrical erosion threshold under varying pulsed current conditions, with experimental validation demonstrating strong agreement. Furthermore, using a thermal network model, we established a correlation between the electrical erosion threshold and the average junction temperature for different high-current pulses and clamping stresses, thereby defining the operational range for electrical erosion in high-current pulse thyristor-based switches. This provides theoretical guidance for the reliable operation of these switches.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 2","pages":"263-273"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the Mechanism of Electrical Erosion Accelerating Failure in High-Current Pulse Thyristor-Based Switches\",\"authors\":\"Shiyun Xiao;Yi Liu;Liuxia Li;Fuchang Lin;Yunxin Miao\",\"doi\":\"10.1109/TDMR.2025.3565618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-current pulse thyristor-based switches operate under high-current pulse conditions and are subjected to coupled electromagnetic-thermomechanical stresses, resulting in the progressive development of thermal fatigue-induced failure mechanisms. The study revealed that localized overheating triggers electrical erosion of the aluminum layer, which further accelerates the thermal fatigue failure of high-current switches. To investigate this phenomenon, a microscopic model of the silicon-aluminum interface incorporating surface roughness effects was developed to quantify the transient temperature rise and electrical erosion threshold under varying pulsed current conditions, with experimental validation demonstrating strong agreement. Furthermore, using a thermal network model, we established a correlation between the electrical erosion threshold and the average junction temperature for different high-current pulses and clamping stresses, thereby defining the operational range for electrical erosion in high-current pulse thyristor-based switches. This provides theoretical guidance for the reliable operation of these switches.\",\"PeriodicalId\":448,\"journal\":{\"name\":\"IEEE Transactions on Device and Materials Reliability\",\"volume\":\"25 2\",\"pages\":\"263-273\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Device and Materials Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10979997/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Device and Materials Reliability","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10979997/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Research on the Mechanism of Electrical Erosion Accelerating Failure in High-Current Pulse Thyristor-Based Switches
High-current pulse thyristor-based switches operate under high-current pulse conditions and are subjected to coupled electromagnetic-thermomechanical stresses, resulting in the progressive development of thermal fatigue-induced failure mechanisms. The study revealed that localized overheating triggers electrical erosion of the aluminum layer, which further accelerates the thermal fatigue failure of high-current switches. To investigate this phenomenon, a microscopic model of the silicon-aluminum interface incorporating surface roughness effects was developed to quantify the transient temperature rise and electrical erosion threshold under varying pulsed current conditions, with experimental validation demonstrating strong agreement. Furthermore, using a thermal network model, we established a correlation between the electrical erosion threshold and the average junction temperature for different high-current pulses and clamping stresses, thereby defining the operational range for electrical erosion in high-current pulse thyristor-based switches. This provides theoretical guidance for the reliable operation of these switches.
期刊介绍:
The scope of the publication includes, but is not limited to Reliability of: Devices, Materials, Processes, Interfaces, Integrated Microsystems (including MEMS & Sensors), Transistors, Technology (CMOS, BiCMOS, etc.), Integrated Circuits (IC, SSI, MSI, LSI, ULSI, ELSI, etc.), Thin Film Transistor Applications. The measurement and understanding of the reliability of such entities at each phase, from the concept stage through research and development and into manufacturing scale-up, provides the overall database on the reliability of the devices, materials, processes, package and other necessities for the successful introduction of a product to market. This reliability database is the foundation for a quality product, which meets customer expectation. A product so developed has high reliability. High quality will be achieved because product weaknesses will have been found (root cause analysis) and designed out of the final product. This process of ever increasing reliability and quality will result in a superior product. In the end, reliability and quality are not one thing; but in a sense everything, which can be or has to be done to guarantee that the product successfully performs in the field under customer conditions. Our goal is to capture these advances. An additional objective is to focus cross fertilized communication in the state of the art of reliability of electronic materials and devices and provide fundamental understanding of basic phenomena that affect reliability. In addition, the publication is a forum for interdisciplinary studies on reliability. An overall goal is to provide leading edge/state of the art information, which is critically relevant to the creation of reliable products.