Guogen Chen , Tong Yang , Dewen Cheng , Yongtian Wang
{"title":"基于光学设计模型的神经网络生成多折叠几何自由曲面反射成像系统","authors":"Guogen Chen , Tong Yang , Dewen Cheng , Yongtian Wang","doi":"10.1016/j.optlastec.2025.113322","DOIUrl":null,"url":null,"abstract":"<div><div>Freeform systems play important roles in modern optical systems, but their design remains challenging due to the complexity of freeform surfaces and lack of efficient methods as well as reference designs. This paper presents a framework that leverages an optical design model-informed neural network (ODMINN) to automatically generate multiple-folding-geometry freeform reflective imaging systems. The network is trained by both the data-driven loss and the physics-informed loss. An automatic training dataset generation method, combined with a fast light-obstruction evaluation method based on equivalent spherical systems, is proposed for obtaining dataset containing systems with various parameters and folding geometries. The real optical design model is integrated into the training process, by directly calculating the physics-informed loss related to imaging performance and optical design constraints using differential ray tracing. Freeform systems can be generated immediately by the network based on the design requirements. Compared with previous network which can only generate systems with one specific folding geometry, multiple-folding-geometry freeform systems can be generated using the proposed framework. We demonstrate the framework by designing freeform off-axis three-mirror systems with all eight different folding geometries. Our approach can significantly reduce human involvement and dependency on existing reference systems in the design of freeform optics, while dramatically improving the design efficiency.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"191 ","pages":"Article 113322"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating multiple-folding-geometry freeform reflective imaging systems based on optical design model-informed neural network\",\"authors\":\"Guogen Chen , Tong Yang , Dewen Cheng , Yongtian Wang\",\"doi\":\"10.1016/j.optlastec.2025.113322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Freeform systems play important roles in modern optical systems, but their design remains challenging due to the complexity of freeform surfaces and lack of efficient methods as well as reference designs. This paper presents a framework that leverages an optical design model-informed neural network (ODMINN) to automatically generate multiple-folding-geometry freeform reflective imaging systems. The network is trained by both the data-driven loss and the physics-informed loss. An automatic training dataset generation method, combined with a fast light-obstruction evaluation method based on equivalent spherical systems, is proposed for obtaining dataset containing systems with various parameters and folding geometries. The real optical design model is integrated into the training process, by directly calculating the physics-informed loss related to imaging performance and optical design constraints using differential ray tracing. Freeform systems can be generated immediately by the network based on the design requirements. Compared with previous network which can only generate systems with one specific folding geometry, multiple-folding-geometry freeform systems can be generated using the proposed framework. We demonstrate the framework by designing freeform off-axis three-mirror systems with all eight different folding geometries. Our approach can significantly reduce human involvement and dependency on existing reference systems in the design of freeform optics, while dramatically improving the design efficiency.</div></div>\",\"PeriodicalId\":19511,\"journal\":{\"name\":\"Optics and Laser Technology\",\"volume\":\"191 \",\"pages\":\"Article 113322\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Laser Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399225009132\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399225009132","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Generating multiple-folding-geometry freeform reflective imaging systems based on optical design model-informed neural network
Freeform systems play important roles in modern optical systems, but their design remains challenging due to the complexity of freeform surfaces and lack of efficient methods as well as reference designs. This paper presents a framework that leverages an optical design model-informed neural network (ODMINN) to automatically generate multiple-folding-geometry freeform reflective imaging systems. The network is trained by both the data-driven loss and the physics-informed loss. An automatic training dataset generation method, combined with a fast light-obstruction evaluation method based on equivalent spherical systems, is proposed for obtaining dataset containing systems with various parameters and folding geometries. The real optical design model is integrated into the training process, by directly calculating the physics-informed loss related to imaging performance and optical design constraints using differential ray tracing. Freeform systems can be generated immediately by the network based on the design requirements. Compared with previous network which can only generate systems with one specific folding geometry, multiple-folding-geometry freeform systems can be generated using the proposed framework. We demonstrate the framework by designing freeform off-axis three-mirror systems with all eight different folding geometries. Our approach can significantly reduce human involvement and dependency on existing reference systems in the design of freeform optics, while dramatically improving the design efficiency.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems