声子流动和热输运的纳米尺度约束

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Albert Beardo, Weinan Chen, Brendan McBennett, Tara Karimzadeh Sabet, Emma E. Nelson, Theodore H. Culman, Henry C. Kapteyn, Joshua L. Knobloch, Margaret M. Murnane, Ismaila Dabo
{"title":"声子流动和热输运的纳米尺度约束","authors":"Albert Beardo, Weinan Chen, Brendan McBennett, Tara Karimzadeh Sabet, Emma E. Nelson, Theodore H. Culman, Henry C. Kapteyn, Joshua L. Knobloch, Margaret M. Murnane, Ismaila Dabo","doi":"10.1038/s41524-025-01593-7","DOIUrl":null,"url":null,"abstract":"<p>Efficient thermal management is critical to device performance and reliability for energy conversion, nanoelectronics, and the development of quantum technologies. The commonly-used diffusive model of heat transport breaks down for confined nanoscale geometries, and advanced theories beyond diffusion are based on disparate assumptions that lead to conflicting predictions. Here, we outline and contrast the two predominant formulations of the Boltzmann equation for heat transport in semiconductors, namely, the ballistic and hydrodynamic models. We examine these methods in light of experiments and atomistic calculations of heat fluxes and temperature profiles in phononic systems with nanometer-sized features. We argue that reconciling the hydrodynamic and ballistic formulations is an outstanding necessity to develop a unifying theory of confinement effects on phonon flow, which will ultimately lead to optimal strategies for thermal management in nanodevices.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"19 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoscale confinement of phonon flow and heat transport\",\"authors\":\"Albert Beardo, Weinan Chen, Brendan McBennett, Tara Karimzadeh Sabet, Emma E. Nelson, Theodore H. Culman, Henry C. Kapteyn, Joshua L. Knobloch, Margaret M. Murnane, Ismaila Dabo\",\"doi\":\"10.1038/s41524-025-01593-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Efficient thermal management is critical to device performance and reliability for energy conversion, nanoelectronics, and the development of quantum technologies. The commonly-used diffusive model of heat transport breaks down for confined nanoscale geometries, and advanced theories beyond diffusion are based on disparate assumptions that lead to conflicting predictions. Here, we outline and contrast the two predominant formulations of the Boltzmann equation for heat transport in semiconductors, namely, the ballistic and hydrodynamic models. We examine these methods in light of experiments and atomistic calculations of heat fluxes and temperature profiles in phononic systems with nanometer-sized features. We argue that reconciling the hydrodynamic and ballistic formulations is an outstanding necessity to develop a unifying theory of confinement effects on phonon flow, which will ultimately lead to optimal strategies for thermal management in nanodevices.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01593-7\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01593-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高效的热管理对于能量转换、纳米电子学和量子技术发展的器件性能和可靠性至关重要。常用的热传递扩散模型在纳米尺度的限制下失效,而超越扩散的先进理论是基于不同的假设,导致相互矛盾的预测。在这里,我们概述并对比了半导体中热输运的玻尔兹曼方程的两种主要公式,即弹道模型和流体动力学模型。我们检查这些方法的实验和原子计算的热通量和温度分布的声子系统与纳米尺寸的特征。我们认为,调和流体力学和弹道公式是发展声子流动约束效应统一理论的突出必要性,这将最终导致纳米器件热管理的最佳策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanoscale confinement of phonon flow and heat transport

Nanoscale confinement of phonon flow and heat transport

Efficient thermal management is critical to device performance and reliability for energy conversion, nanoelectronics, and the development of quantum technologies. The commonly-used diffusive model of heat transport breaks down for confined nanoscale geometries, and advanced theories beyond diffusion are based on disparate assumptions that lead to conflicting predictions. Here, we outline and contrast the two predominant formulations of the Boltzmann equation for heat transport in semiconductors, namely, the ballistic and hydrodynamic models. We examine these methods in light of experiments and atomistic calculations of heat fluxes and temperature profiles in phononic systems with nanometer-sized features. We argue that reconciling the hydrodynamic and ballistic formulations is an outstanding necessity to develop a unifying theory of confinement effects on phonon flow, which will ultimately lead to optimal strategies for thermal management in nanodevices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信