平衡电荷分布的有机/无机异质界面工程

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yongjian Chen , Yuanxiao Qu , Longchao Huang , Xiankan Zeng , Huayang Zhang , Wen Li , Guanqi Tang , Xiangtian Xiao , Weiqing Yang
{"title":"平衡电荷分布的有机/无机异质界面工程","authors":"Yongjian Chen ,&nbsp;Yuanxiao Qu ,&nbsp;Longchao Huang ,&nbsp;Xiankan Zeng ,&nbsp;Huayang Zhang ,&nbsp;Wen Li ,&nbsp;Guanqi Tang ,&nbsp;Xiangtian Xiao ,&nbsp;Weiqing Yang","doi":"10.1016/j.mtphys.2025.101764","DOIUrl":null,"url":null,"abstract":"<div><div>Subnanometer-scale lithium fluoride (LiF) layer has been widely employed to enhance electron injection between Al electrode and organic electron transport layers (ETL). However, thermally evaporated ultrathin LiF exhibits incomplete substrate coverage and generates substantial defect-induced charge trapping centers during operation, resulting in poor organic/inorganic interfacial characteristics. In this work, a composite electron injection layer (cEIL) was constructed by combining 8-Quinolinolato lithium (Liq) with excellent interface characteristics of organic/inorganic transition and LiF with strong polarity, which significantly improved the surface potential distribution and achieved balanced charge distribution. The optimized perovskite light-emitting diodes (PeLEDs) demonstrated remarkable electroluminescence (EL) performance enhancement: the external quantum efficiency (EQE) increased from 15.74 % to 20.53 %, and the current efficiency (CE) improved from 73.39 cd/A to 98.59 cd/A. This study provides new insights for organic/inorganic interface engineering in high-performance optoelectronic devices.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"56 ","pages":"Article 101764"},"PeriodicalIF":10.0000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Organic/inorganic heterointerfaces engineering for balanced charge distribution\",\"authors\":\"Yongjian Chen ,&nbsp;Yuanxiao Qu ,&nbsp;Longchao Huang ,&nbsp;Xiankan Zeng ,&nbsp;Huayang Zhang ,&nbsp;Wen Li ,&nbsp;Guanqi Tang ,&nbsp;Xiangtian Xiao ,&nbsp;Weiqing Yang\",\"doi\":\"10.1016/j.mtphys.2025.101764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Subnanometer-scale lithium fluoride (LiF) layer has been widely employed to enhance electron injection between Al electrode and organic electron transport layers (ETL). However, thermally evaporated ultrathin LiF exhibits incomplete substrate coverage and generates substantial defect-induced charge trapping centers during operation, resulting in poor organic/inorganic interfacial characteristics. In this work, a composite electron injection layer (cEIL) was constructed by combining 8-Quinolinolato lithium (Liq) with excellent interface characteristics of organic/inorganic transition and LiF with strong polarity, which significantly improved the surface potential distribution and achieved balanced charge distribution. The optimized perovskite light-emitting diodes (PeLEDs) demonstrated remarkable electroluminescence (EL) performance enhancement: the external quantum efficiency (EQE) increased from 15.74 % to 20.53 %, and the current efficiency (CE) improved from 73.39 cd/A to 98.59 cd/A. This study provides new insights for organic/inorganic interface engineering in high-performance optoelectronic devices.</div></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"56 \",\"pages\":\"Article 101764\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529325001208\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325001208","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

亚纳米级氟化锂(LiF)层被广泛用于增强铝电极与有机电子传递层(ETL)之间的电子注入。然而,热蒸发超薄LiF表现出衬底覆盖不完全,并且在运行过程中产生大量缺陷引起的电荷捕获中心,导致有机/无机界面特性较差。本研究将具有优异有机/无机过渡界面特性的8-喹啉酸锂(Liq)与具有强极性的LiF结合,构建了复合电子注入层(cEIL),显著改善了表面电位分布,实现了电荷分布的平衡。优化后的钙钛矿发光二极管(PeLEDs)的电致发光(EL)性能显著提高:外量子效率(EQE)从15.74%提高到20.53%,电流效率(CE)从73.39 cd/A提高到98.59 cd/A。该研究为高性能光电器件的有机/无机界面工程提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Organic/inorganic heterointerfaces engineering for balanced charge distribution
Subnanometer-scale lithium fluoride (LiF) layer has been widely employed to enhance electron injection between Al electrode and organic electron transport layers (ETL). However, thermally evaporated ultrathin LiF exhibits incomplete substrate coverage and generates substantial defect-induced charge trapping centers during operation, resulting in poor organic/inorganic interfacial characteristics. In this work, a composite electron injection layer (cEIL) was constructed by combining 8-Quinolinolato lithium (Liq) with excellent interface characteristics of organic/inorganic transition and LiF with strong polarity, which significantly improved the surface potential distribution and achieved balanced charge distribution. The optimized perovskite light-emitting diodes (PeLEDs) demonstrated remarkable electroluminescence (EL) performance enhancement: the external quantum efficiency (EQE) increased from 15.74 % to 20.53 %, and the current efficiency (CE) improved from 73.39 cd/A to 98.59 cd/A. This study provides new insights for organic/inorganic interface engineering in high-performance optoelectronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信