Cheng-Tai Kuo, Makoto Hashimoto, Heemin Lee, Tan Thanh Huynh, Abraham Maciel, Zina Zhang, Dehong Zhang, Benjamin Edwards, Farzan Kazemifar, Chi-Chang Kao, Donghui Lu, Jun-Sik Lee
{"title":"介绍了SSRL中新的软x射线共振散射能力。","authors":"Cheng-Tai Kuo, Makoto Hashimoto, Heemin Lee, Tan Thanh Huynh, Abraham Maciel, Zina Zhang, Dehong Zhang, Benjamin Edwards, Farzan Kazemifar, Chi-Chang Kao, Donghui Lu, Jun-Sik Lee","doi":"10.1063/5.0257317","DOIUrl":null,"url":null,"abstract":"<p><p>Resonant soft x-ray scattering (RSXS) is a powerful technique for probing both spatial and electronic structures within solid-state systems. We present a newly developed RSXS capability at beamline 13-3 of the Stanford Synchrotron Radiation Lightsource, designed to enhance materials science research. This advanced setup achieves a base sample temperature as low as 9.8 K combined with extensive angular motions (azimuthal ϕ and flipping χ), enabling comprehensive exploration of reciprocal space. Two types of detectors-an Au/GaAsP Schottky photodiode and a charge-coupled device detector with over 95% quantum efficiency-are integrated to effectively capture scattered photons. Extensive testing has confirmed the enhanced functionality of this RSXS setup, including its temperature and angular performance. The versatility and effectiveness of the system have been demonstrated through studies of various materials, including superlattice heterostructures and high-temperature superconductors.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introducing new resonant soft x-ray scattering capability in SSRL.\",\"authors\":\"Cheng-Tai Kuo, Makoto Hashimoto, Heemin Lee, Tan Thanh Huynh, Abraham Maciel, Zina Zhang, Dehong Zhang, Benjamin Edwards, Farzan Kazemifar, Chi-Chang Kao, Donghui Lu, Jun-Sik Lee\",\"doi\":\"10.1063/5.0257317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Resonant soft x-ray scattering (RSXS) is a powerful technique for probing both spatial and electronic structures within solid-state systems. We present a newly developed RSXS capability at beamline 13-3 of the Stanford Synchrotron Radiation Lightsource, designed to enhance materials science research. This advanced setup achieves a base sample temperature as low as 9.8 K combined with extensive angular motions (azimuthal ϕ and flipping χ), enabling comprehensive exploration of reciprocal space. Two types of detectors-an Au/GaAsP Schottky photodiode and a charge-coupled device detector with over 95% quantum efficiency-are integrated to effectively capture scattered photons. Extensive testing has confirmed the enhanced functionality of this RSXS setup, including its temperature and angular performance. The versatility and effectiveness of the system have been demonstrated through studies of various materials, including superlattice heterostructures and high-temperature superconductors.</p>\",\"PeriodicalId\":21111,\"journal\":{\"name\":\"Review of Scientific Instruments\",\"volume\":\"96 6\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Review of Scientific Instruments\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0257317\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0257317","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Introducing new resonant soft x-ray scattering capability in SSRL.
Resonant soft x-ray scattering (RSXS) is a powerful technique for probing both spatial and electronic structures within solid-state systems. We present a newly developed RSXS capability at beamline 13-3 of the Stanford Synchrotron Radiation Lightsource, designed to enhance materials science research. This advanced setup achieves a base sample temperature as low as 9.8 K combined with extensive angular motions (azimuthal ϕ and flipping χ), enabling comprehensive exploration of reciprocal space. Two types of detectors-an Au/GaAsP Schottky photodiode and a charge-coupled device detector with over 95% quantum efficiency-are integrated to effectively capture scattered photons. Extensive testing has confirmed the enhanced functionality of this RSXS setup, including its temperature and angular performance. The versatility and effectiveness of the system have been demonstrated through studies of various materials, including superlattice heterostructures and high-temperature superconductors.
期刊介绍:
Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.