Jessica R Crawshaw, Eamonn A Gaffney, Michael Gertz, Philip K Maini, Antonello Caruso
{"title":"模拟雷尼单抗的眼部药代动力学和药效学,以提高对眼部疾病的理解和数据收集策略。","authors":"Jessica R Crawshaw, Eamonn A Gaffney, Michael Gertz, Philip K Maini, Antonello Caruso","doi":"10.1167/iovs.66.6.20","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Improving our understanding of the ocular pharmacokinetics and pharmacodynamics of anti-vascular endothelial growth factor (VEGF) therapies, such as ranibizumab, is essential to enhance treatment strategies for a range of retinal diseases, and will help inform the development of novel anti-VEGF drug candidates.</p><p><strong>Methods: </strong>In this study, we examine a two-compartment pharmacokinetic/pharmacodynamic model of an intravitreal ranibizumab injection to understand its impact on ocular VEGF suppression. We use Bayesian inference to infer the model parameters from aqueous humor data extracted from healthy cynomolgus macaques. We leverage this approach to explore various sources of uncertainty in the data, offering practical recommendations for minimizing avoidable uncertainty.</p><p><strong>Results: </strong>The model provides a robust description of ranibizumab pharmacokinetics and pharmacodynamics, identifying the recovery region of the aqueous humor VEGF concentration-time profile as critical for the precise estimation of parameters. Our results advocate focusing on this region in future studies for optimal data collection. We consider standard data correction techniques to reduce the data uncertainty introduced by the lower limit of quantification, identifying the most preferable technique for this model and data. Using a Bayesian approach we obtain an inferred mean posterior distribution of 1459 ± 98 pM for the ranibizumab dissociation constant, a pharmacodynamic parameter with notable variability across the literature.</p><p><strong>Conclusions: </strong>This study extends our understanding of the ocular pharmacokinetics and pharmacodynamics of ranibizumab and provides theoretical insights for enhanced data collection schemes to be considered for clinical trials and in the development of novel anti-VEGF therapies.</p>","PeriodicalId":14620,"journal":{"name":"Investigative ophthalmology & visual science","volume":"66 6","pages":"20"},"PeriodicalIF":4.7000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12155695/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modeling the Ocular Pharmacokinetics and Pharmacodynamics of Ranibizumab for Improved Understanding and Data Collection Strategies in Ocular Diseases.\",\"authors\":\"Jessica R Crawshaw, Eamonn A Gaffney, Michael Gertz, Philip K Maini, Antonello Caruso\",\"doi\":\"10.1167/iovs.66.6.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Improving our understanding of the ocular pharmacokinetics and pharmacodynamics of anti-vascular endothelial growth factor (VEGF) therapies, such as ranibizumab, is essential to enhance treatment strategies for a range of retinal diseases, and will help inform the development of novel anti-VEGF drug candidates.</p><p><strong>Methods: </strong>In this study, we examine a two-compartment pharmacokinetic/pharmacodynamic model of an intravitreal ranibizumab injection to understand its impact on ocular VEGF suppression. We use Bayesian inference to infer the model parameters from aqueous humor data extracted from healthy cynomolgus macaques. We leverage this approach to explore various sources of uncertainty in the data, offering practical recommendations for minimizing avoidable uncertainty.</p><p><strong>Results: </strong>The model provides a robust description of ranibizumab pharmacokinetics and pharmacodynamics, identifying the recovery region of the aqueous humor VEGF concentration-time profile as critical for the precise estimation of parameters. Our results advocate focusing on this region in future studies for optimal data collection. We consider standard data correction techniques to reduce the data uncertainty introduced by the lower limit of quantification, identifying the most preferable technique for this model and data. Using a Bayesian approach we obtain an inferred mean posterior distribution of 1459 ± 98 pM for the ranibizumab dissociation constant, a pharmacodynamic parameter with notable variability across the literature.</p><p><strong>Conclusions: </strong>This study extends our understanding of the ocular pharmacokinetics and pharmacodynamics of ranibizumab and provides theoretical insights for enhanced data collection schemes to be considered for clinical trials and in the development of novel anti-VEGF therapies.</p>\",\"PeriodicalId\":14620,\"journal\":{\"name\":\"Investigative ophthalmology & visual science\",\"volume\":\"66 6\",\"pages\":\"20\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12155695/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Investigative ophthalmology & visual science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1167/iovs.66.6.20\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative ophthalmology & visual science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/iovs.66.6.20","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Modeling the Ocular Pharmacokinetics and Pharmacodynamics of Ranibizumab for Improved Understanding and Data Collection Strategies in Ocular Diseases.
Purpose: Improving our understanding of the ocular pharmacokinetics and pharmacodynamics of anti-vascular endothelial growth factor (VEGF) therapies, such as ranibizumab, is essential to enhance treatment strategies for a range of retinal diseases, and will help inform the development of novel anti-VEGF drug candidates.
Methods: In this study, we examine a two-compartment pharmacokinetic/pharmacodynamic model of an intravitreal ranibizumab injection to understand its impact on ocular VEGF suppression. We use Bayesian inference to infer the model parameters from aqueous humor data extracted from healthy cynomolgus macaques. We leverage this approach to explore various sources of uncertainty in the data, offering practical recommendations for minimizing avoidable uncertainty.
Results: The model provides a robust description of ranibizumab pharmacokinetics and pharmacodynamics, identifying the recovery region of the aqueous humor VEGF concentration-time profile as critical for the precise estimation of parameters. Our results advocate focusing on this region in future studies for optimal data collection. We consider standard data correction techniques to reduce the data uncertainty introduced by the lower limit of quantification, identifying the most preferable technique for this model and data. Using a Bayesian approach we obtain an inferred mean posterior distribution of 1459 ± 98 pM for the ranibizumab dissociation constant, a pharmacodynamic parameter with notable variability across the literature.
Conclusions: This study extends our understanding of the ocular pharmacokinetics and pharmacodynamics of ranibizumab and provides theoretical insights for enhanced data collection schemes to be considered for clinical trials and in the development of novel anti-VEGF therapies.
期刊介绍:
Investigative Ophthalmology & Visual Science (IOVS), published as ready online, is a peer-reviewed academic journal of the Association for Research in Vision and Ophthalmology (ARVO). IOVS features original research, mostly pertaining to clinical and laboratory ophthalmology and vision research in general.