{"title":"保证可接受阻塞概率的多平面扭折闭合网络设计","authors":"Eiji Oki;Ryotaro Taniguchi;Kazuya Anazawa;Takeru Inoue","doi":"10.1109/TNSM.2025.3539907","DOIUrl":null,"url":null,"abstract":"Future advancements in data centers are anticipated to incorporate advanced circuit switching technologies, especially optical switching, which achieve high transmission capacity and energy efficiency. Previous studies addressed a Clos-network design problem to guarantee an admissible blocking probability to maximize the switching capacity, which is defined by the number of terminals connected to the network. However, as the number of available <inline-formula> <tex-math>${N} \\times {N}$ </tex-math></inline-formula> switches increases, the switching capacity no longer increases due to the switch port limitation. This paper proposes a design of a multiple-plane twisted-folded (TF) Clos network, named MP-TF, to enhance the switching capacity, which is limited by the original TF-Clos, by guaranteeing an admissible blocking probability. MP-TF consists of identical M TF-Clos planes and pairs of a <inline-formula> <tex-math>$1\\times {M}$ </tex-math></inline-formula> selector and an <inline-formula> <tex-math>${M} \\times 1$ </tex-math></inline-formula> selector, each pair of which is associated with a transmitter and receiver pair. We formulate a design model of MP-TF as an optimization problem to maximize the switching capacity. We introduce connection admission control in MP-TF, named MP-CAC. We derive the theorem that the MP-TF design model using MP-CAC guarantees the admissible blocking probability. Numerical results observe that MP-TF increases the switching capacity as the number of TF-Clos planes when available <inline-formula> <tex-math>${N} \\times {N}$ </tex-math></inline-formula> switches are sufficient; for example, with seven planes, the switching capacity is 1.97 times larger than that of one plane, given a request active probability of 0.6 and an admissible blocking probability of 0.01. We find that the computation time for MP-TF diminishes with an increase in the number of TF-Clos planes. Designing MP-TF is similar to designing a single TF-Clos plane, differing mainly in the handling of connection admission control. With a larger number of <inline-formula> <tex-math>${N} \\times {N}$ </tex-math></inline-formula> switches, MP-TF enables the design of a smaller TF-Clos plane. We provide the analyses of optical power management and network cost of MP-TF.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"22 3","pages":"2278-2294"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10877882","citationCount":"0","resultStr":"{\"title\":\"Design of Multiple-Plane Twisted and Folded Clos Network Guaranteeing Admissible Blocking Probability\",\"authors\":\"Eiji Oki;Ryotaro Taniguchi;Kazuya Anazawa;Takeru Inoue\",\"doi\":\"10.1109/TNSM.2025.3539907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future advancements in data centers are anticipated to incorporate advanced circuit switching technologies, especially optical switching, which achieve high transmission capacity and energy efficiency. Previous studies addressed a Clos-network design problem to guarantee an admissible blocking probability to maximize the switching capacity, which is defined by the number of terminals connected to the network. However, as the number of available <inline-formula> <tex-math>${N} \\\\times {N}$ </tex-math></inline-formula> switches increases, the switching capacity no longer increases due to the switch port limitation. This paper proposes a design of a multiple-plane twisted-folded (TF) Clos network, named MP-TF, to enhance the switching capacity, which is limited by the original TF-Clos, by guaranteeing an admissible blocking probability. MP-TF consists of identical M TF-Clos planes and pairs of a <inline-formula> <tex-math>$1\\\\times {M}$ </tex-math></inline-formula> selector and an <inline-formula> <tex-math>${M} \\\\times 1$ </tex-math></inline-formula> selector, each pair of which is associated with a transmitter and receiver pair. We formulate a design model of MP-TF as an optimization problem to maximize the switching capacity. We introduce connection admission control in MP-TF, named MP-CAC. We derive the theorem that the MP-TF design model using MP-CAC guarantees the admissible blocking probability. Numerical results observe that MP-TF increases the switching capacity as the number of TF-Clos planes when available <inline-formula> <tex-math>${N} \\\\times {N}$ </tex-math></inline-formula> switches are sufficient; for example, with seven planes, the switching capacity is 1.97 times larger than that of one plane, given a request active probability of 0.6 and an admissible blocking probability of 0.01. We find that the computation time for MP-TF diminishes with an increase in the number of TF-Clos planes. Designing MP-TF is similar to designing a single TF-Clos plane, differing mainly in the handling of connection admission control. With a larger number of <inline-formula> <tex-math>${N} \\\\times {N}$ </tex-math></inline-formula> switches, MP-TF enables the design of a smaller TF-Clos plane. We provide the analyses of optical power management and network cost of MP-TF.\",\"PeriodicalId\":13423,\"journal\":{\"name\":\"IEEE Transactions on Network and Service Management\",\"volume\":\"22 3\",\"pages\":\"2278-2294\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10877882\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network and Service Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10877882/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10877882/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Design of Multiple-Plane Twisted and Folded Clos Network Guaranteeing Admissible Blocking Probability
Future advancements in data centers are anticipated to incorporate advanced circuit switching technologies, especially optical switching, which achieve high transmission capacity and energy efficiency. Previous studies addressed a Clos-network design problem to guarantee an admissible blocking probability to maximize the switching capacity, which is defined by the number of terminals connected to the network. However, as the number of available ${N} \times {N}$ switches increases, the switching capacity no longer increases due to the switch port limitation. This paper proposes a design of a multiple-plane twisted-folded (TF) Clos network, named MP-TF, to enhance the switching capacity, which is limited by the original TF-Clos, by guaranteeing an admissible blocking probability. MP-TF consists of identical M TF-Clos planes and pairs of a $1\times {M}$ selector and an ${M} \times 1$ selector, each pair of which is associated with a transmitter and receiver pair. We formulate a design model of MP-TF as an optimization problem to maximize the switching capacity. We introduce connection admission control in MP-TF, named MP-CAC. We derive the theorem that the MP-TF design model using MP-CAC guarantees the admissible blocking probability. Numerical results observe that MP-TF increases the switching capacity as the number of TF-Clos planes when available ${N} \times {N}$ switches are sufficient; for example, with seven planes, the switching capacity is 1.97 times larger than that of one plane, given a request active probability of 0.6 and an admissible blocking probability of 0.01. We find that the computation time for MP-TF diminishes with an increase in the number of TF-Clos planes. Designing MP-TF is similar to designing a single TF-Clos plane, differing mainly in the handling of connection admission control. With a larger number of ${N} \times {N}$ switches, MP-TF enables the design of a smaller TF-Clos plane. We provide the analyses of optical power management and network cost of MP-TF.
期刊介绍:
IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.