{"title":"用于区域地震易损性分析的桥梁网概率功能损失率模型","authors":"Jian Zhong , Sien Zhou , Hao Wang","doi":"10.1016/j.ress.2025.111299","DOIUrl":null,"url":null,"abstract":"<div><div>The evaluation of traffic functionality of bridge networks in post-earthquake is essential for rescue and reconstruction. The previous studies have a limitation of combination with individual bridge seismic performance analysis and network traffic functionality analysis, which brings a great difficulty to rational aseismic decision making at network-level. Therefore, a probabilistic functionality loss rate model (PFLRM) is established for bridge network. For estimating the network functionality loss, a novel index is defined in PFLRM, named functionality loss rate (FLR). Moreover, the assessment method of FLR is also provided accounting for seismic intensity measure (IM), individual bridge parameters and network topology. In addition, for improving the obtaining efficiency of FLR, a quantified model between FLR and IM is established, which has the advantages of applicability, accuracy and efficiency. The precision of proposed PFLRM is compared by Monte Carlo method on twelve benchmark networks. Finally, the proposed model can be applied on a real network for regional seismic fragility analysis to identify important bridges and make repair strategy.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"264 ","pages":"Article 111299"},"PeriodicalIF":11.0000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic Functionality Loss Rate Model of Bridge Network for Regional Seismic Fragility Analysis\",\"authors\":\"Jian Zhong , Sien Zhou , Hao Wang\",\"doi\":\"10.1016/j.ress.2025.111299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The evaluation of traffic functionality of bridge networks in post-earthquake is essential for rescue and reconstruction. The previous studies have a limitation of combination with individual bridge seismic performance analysis and network traffic functionality analysis, which brings a great difficulty to rational aseismic decision making at network-level. Therefore, a probabilistic functionality loss rate model (PFLRM) is established for bridge network. For estimating the network functionality loss, a novel index is defined in PFLRM, named functionality loss rate (FLR). Moreover, the assessment method of FLR is also provided accounting for seismic intensity measure (IM), individual bridge parameters and network topology. In addition, for improving the obtaining efficiency of FLR, a quantified model between FLR and IM is established, which has the advantages of applicability, accuracy and efficiency. The precision of proposed PFLRM is compared by Monte Carlo method on twelve benchmark networks. Finally, the proposed model can be applied on a real network for regional seismic fragility analysis to identify important bridges and make repair strategy.</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":\"264 \",\"pages\":\"Article 111299\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951832025005009\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832025005009","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Probabilistic Functionality Loss Rate Model of Bridge Network for Regional Seismic Fragility Analysis
The evaluation of traffic functionality of bridge networks in post-earthquake is essential for rescue and reconstruction. The previous studies have a limitation of combination with individual bridge seismic performance analysis and network traffic functionality analysis, which brings a great difficulty to rational aseismic decision making at network-level. Therefore, a probabilistic functionality loss rate model (PFLRM) is established for bridge network. For estimating the network functionality loss, a novel index is defined in PFLRM, named functionality loss rate (FLR). Moreover, the assessment method of FLR is also provided accounting for seismic intensity measure (IM), individual bridge parameters and network topology. In addition, for improving the obtaining efficiency of FLR, a quantified model between FLR and IM is established, which has the advantages of applicability, accuracy and efficiency. The precision of proposed PFLRM is compared by Monte Carlo method on twelve benchmark networks. Finally, the proposed model can be applied on a real network for regional seismic fragility analysis to identify important bridges and make repair strategy.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.