{"title":"自适应流量控制:在软件定义网络中实现高质量服务的基于openflow的优先级策略","authors":"Yu-Fang Chen;Frank Yeong-Sung Lin;Sheng-Yung Hsu;Tzu-Lung Sun;Yennun Huang;Chiu-Han Hsiao","doi":"10.1109/TNSM.2025.3540012","DOIUrl":null,"url":null,"abstract":"This paper tackles key challenges in Software-Defined Networking (SDN) by proposing a novel approach for optimizing resource allocation and dynamic priority assignment using OpenFlow’s priority field. The proposed Lagrangian relaxation (LR)-based algorithms significantly reduces network delay, achieving performance management with dynamic priority levels while demonstrating adaptability and efficiency in a sliced network. The algorithms’ effectiveness were validated through computational experiments, highlighting the strong potential for QoS management across diverse industries. Compared to the Same Priority baseline, the proposed methods: RPA, AP–1, and AP–2, exhibited notable performance improvements, particularly under strict delay constraints. For future applications, the study recommends expanding the algorithm to handle larger networks, integrating it with artificial intelligence technologies for proactive resource optimization. Additionally, the proposed methods lay a solid foundation for addressing the unique demands of 6G networks, particularly in areas such as base station mobility (Low-Earth Orbit, LEO), ultra-low latency, and multi-path transmission strategies.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"22 3","pages":"2295-2310"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10877862","citationCount":"0","resultStr":"{\"title\":\"Adaptive Traffic Control: OpenFlow-Based Prioritization Strategies for Achieving High Quality of Service in Software-Defined Networking\",\"authors\":\"Yu-Fang Chen;Frank Yeong-Sung Lin;Sheng-Yung Hsu;Tzu-Lung Sun;Yennun Huang;Chiu-Han Hsiao\",\"doi\":\"10.1109/TNSM.2025.3540012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper tackles key challenges in Software-Defined Networking (SDN) by proposing a novel approach for optimizing resource allocation and dynamic priority assignment using OpenFlow’s priority field. The proposed Lagrangian relaxation (LR)-based algorithms significantly reduces network delay, achieving performance management with dynamic priority levels while demonstrating adaptability and efficiency in a sliced network. The algorithms’ effectiveness were validated through computational experiments, highlighting the strong potential for QoS management across diverse industries. Compared to the Same Priority baseline, the proposed methods: RPA, AP–1, and AP–2, exhibited notable performance improvements, particularly under strict delay constraints. For future applications, the study recommends expanding the algorithm to handle larger networks, integrating it with artificial intelligence technologies for proactive resource optimization. Additionally, the proposed methods lay a solid foundation for addressing the unique demands of 6G networks, particularly in areas such as base station mobility (Low-Earth Orbit, LEO), ultra-low latency, and multi-path transmission strategies.\",\"PeriodicalId\":13423,\"journal\":{\"name\":\"IEEE Transactions on Network and Service Management\",\"volume\":\"22 3\",\"pages\":\"2295-2310\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10877862\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network and Service Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10877862/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10877862/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Adaptive Traffic Control: OpenFlow-Based Prioritization Strategies for Achieving High Quality of Service in Software-Defined Networking
This paper tackles key challenges in Software-Defined Networking (SDN) by proposing a novel approach for optimizing resource allocation and dynamic priority assignment using OpenFlow’s priority field. The proposed Lagrangian relaxation (LR)-based algorithms significantly reduces network delay, achieving performance management with dynamic priority levels while demonstrating adaptability and efficiency in a sliced network. The algorithms’ effectiveness were validated through computational experiments, highlighting the strong potential for QoS management across diverse industries. Compared to the Same Priority baseline, the proposed methods: RPA, AP–1, and AP–2, exhibited notable performance improvements, particularly under strict delay constraints. For future applications, the study recommends expanding the algorithm to handle larger networks, integrating it with artificial intelligence technologies for proactive resource optimization. Additionally, the proposed methods lay a solid foundation for addressing the unique demands of 6G networks, particularly in areas such as base station mobility (Low-Earth Orbit, LEO), ultra-low latency, and multi-path transmission strategies.
期刊介绍:
IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.