在稀土磁晶各向异性密度泛函理论计算中执行洪德规则的重要性

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Y. Lee, Z. Ning, R. Flint, R. J. McQueeney, I. I. Mazin, Liqin Ke
{"title":"在稀土磁晶各向异性密度泛函理论计算中执行洪德规则的重要性","authors":"Y. Lee, Z. Ning, R. Flint, R. J. McQueeney, I. I. Mazin, Liqin Ke","doi":"10.1038/s41524-025-01632-3","DOIUrl":null,"url":null,"abstract":"<p>Density functional theory (DFT) and its extensions, such as DFT+<i>U</i> and DFT+dynamical mean-field theory, are invaluable for studying magnetic properties in solids. However, rare-earth (<i>R</i>) materials remain challenging due to self-interaction errors and the lack of proper orbital polarization. We show how the orbital dependence of self-interaction error contradicts Hund’s rules and plagues magnetocrystalline anisotropy (MA) calculations, and how analyzing DFT states that respect Hund’s rules can mitigate this issue. We benchmark MA in <i>R</i>Co<sub>5</sub>, <i>R</i><sub>2</sub>Fe<sub>14</sub>B, and <i>R</i>Fe<sub>12</sub>, extending prior work on <i>R</i>Mn<sub>6</sub>Sn<sub>6</sub>, achieving excellent agreement with experiments. Additionally, we illustrate a semi-analytical perturbation approach that treats crystal fields as a perturbation in the large spin-orbit coupling limit. Using Gd-4<i>f</i> crystal-field splitting, this method provides a microscopic understanding of MA and enables rapid screening of high-MA materials.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"9 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Importance of enforcing Hund’s rules in density functional theory calculations of rare earth magnetocrystalline anisotropy\",\"authors\":\"Y. Lee, Z. Ning, R. Flint, R. J. McQueeney, I. I. Mazin, Liqin Ke\",\"doi\":\"10.1038/s41524-025-01632-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Density functional theory (DFT) and its extensions, such as DFT+<i>U</i> and DFT+dynamical mean-field theory, are invaluable for studying magnetic properties in solids. However, rare-earth (<i>R</i>) materials remain challenging due to self-interaction errors and the lack of proper orbital polarization. We show how the orbital dependence of self-interaction error contradicts Hund’s rules and plagues magnetocrystalline anisotropy (MA) calculations, and how analyzing DFT states that respect Hund’s rules can mitigate this issue. We benchmark MA in <i>R</i>Co<sub>5</sub>, <i>R</i><sub>2</sub>Fe<sub>14</sub>B, and <i>R</i>Fe<sub>12</sub>, extending prior work on <i>R</i>Mn<sub>6</sub>Sn<sub>6</sub>, achieving excellent agreement with experiments. Additionally, we illustrate a semi-analytical perturbation approach that treats crystal fields as a perturbation in the large spin-orbit coupling limit. Using Gd-4<i>f</i> crystal-field splitting, this method provides a microscopic understanding of MA and enables rapid screening of high-MA materials.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01632-3\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01632-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

密度泛函理论(DFT)及其扩展,如DFT+U理论和DFT+动力平均场理论,对于研究固体的磁性具有重要的价值。然而,由于自相互作用误差和缺乏适当的轨道极化,稀土(R)材料仍然具有挑战性。我们展示了自相互作用误差的轨道依赖性如何与洪德规则相矛盾并困扰磁晶各向异性(MA)计算,以及如何分析尊重洪德规则的DFT状态可以减轻这一问题。我们在RCo5、R2Fe14B和RFe12中对MA进行了基准测试,扩展了之前在RMn6Sn6上的工作,与实验结果非常吻合。此外,我们还说明了一种半解析微扰方法,该方法将晶体场视为大自旋轨道耦合极限下的微扰。使用Gd-4f晶体场分裂,该方法提供了MA的微观理解,并能够快速筛选高MA材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Importance of enforcing Hund’s rules in density functional theory calculations of rare earth magnetocrystalline anisotropy

Importance of enforcing Hund’s rules in density functional theory calculations of rare earth magnetocrystalline anisotropy

Density functional theory (DFT) and its extensions, such as DFT+U and DFT+dynamical mean-field theory, are invaluable for studying magnetic properties in solids. However, rare-earth (R) materials remain challenging due to self-interaction errors and the lack of proper orbital polarization. We show how the orbital dependence of self-interaction error contradicts Hund’s rules and plagues magnetocrystalline anisotropy (MA) calculations, and how analyzing DFT states that respect Hund’s rules can mitigate this issue. We benchmark MA in RCo5, R2Fe14B, and RFe12, extending prior work on RMn6Sn6, achieving excellent agreement with experiments. Additionally, we illustrate a semi-analytical perturbation approach that treats crystal fields as a perturbation in the large spin-orbit coupling limit. Using Gd-4f crystal-field splitting, this method provides a microscopic understanding of MA and enables rapid screening of high-MA materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信