{"title":"低频节奏叠加CA1脉冲突触输入诱导的突触可塑性","authors":"Satoshi Fujii , Yoshihiko Yamazaki , Hiroki Fujiwara , Jun-Ichi Goto , Takeo Watanabe , Katsuhiko Mikoshiba","doi":"10.1016/j.neures.2025.104913","DOIUrl":null,"url":null,"abstract":"<div><div>Hippocampal neurons fire synchronously in a population at low frequencies and burst individually at high frequencies, with synaptic plasticity thought to depend on the interplay of these firing patterns. This study investigated synaptic plasticity in the hippocampal CA1 region induced by synaptic input with bursts superimposed on low-frequency rhythms. Low-frequency stimulation (LFS) was varied from 0.5 to 5 Hz, and various numbers of bursts (3–1000) consisting of 2–4 pulses at 100 Hz were superimposed on LFS. The patterned stimuli with 1-Hz LFS effectively induced synaptic plasticity. The direction and magnitude of plasticity depended on the number of bursts. We identified key roles for adenosine A<sub>1</sub> receptors and GABAergic signaling in regulating synaptic plasticity. The blockade of adenosine A<sub>1</sub> receptors increased the magnitude of long-term potentiation induced by specific burst patterns and differentially affected synaptic plasticity induced by 1-Hz LFS. Through its interactions with hippocampal rhythms and inhibitory circuits, adenosine elevated extracellularly during conditioning stimuli regulated the magnitude and direction of synaptic plasticity. This study proposes hypotheses for the role of adenosine in the modulation of synaptic plasticity, which maintains the balance between potentiation and depression in hippocampal circuits.</div></div>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":"217 ","pages":"Article 104913"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synaptic plasticity induced by CA1 synaptic input with bursts superimposed on low-frequency rhythms\",\"authors\":\"Satoshi Fujii , Yoshihiko Yamazaki , Hiroki Fujiwara , Jun-Ichi Goto , Takeo Watanabe , Katsuhiko Mikoshiba\",\"doi\":\"10.1016/j.neures.2025.104913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hippocampal neurons fire synchronously in a population at low frequencies and burst individually at high frequencies, with synaptic plasticity thought to depend on the interplay of these firing patterns. This study investigated synaptic plasticity in the hippocampal CA1 region induced by synaptic input with bursts superimposed on low-frequency rhythms. Low-frequency stimulation (LFS) was varied from 0.5 to 5 Hz, and various numbers of bursts (3–1000) consisting of 2–4 pulses at 100 Hz were superimposed on LFS. The patterned stimuli with 1-Hz LFS effectively induced synaptic plasticity. The direction and magnitude of plasticity depended on the number of bursts. We identified key roles for adenosine A<sub>1</sub> receptors and GABAergic signaling in regulating synaptic plasticity. The blockade of adenosine A<sub>1</sub> receptors increased the magnitude of long-term potentiation induced by specific burst patterns and differentially affected synaptic plasticity induced by 1-Hz LFS. Through its interactions with hippocampal rhythms and inhibitory circuits, adenosine elevated extracellularly during conditioning stimuli regulated the magnitude and direction of synaptic plasticity. This study proposes hypotheses for the role of adenosine in the modulation of synaptic plasticity, which maintains the balance between potentiation and depression in hippocampal circuits.</div></div>\",\"PeriodicalId\":19146,\"journal\":{\"name\":\"Neuroscience Research\",\"volume\":\"217 \",\"pages\":\"Article 104913\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168010225000963\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168010225000963","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Synaptic plasticity induced by CA1 synaptic input with bursts superimposed on low-frequency rhythms
Hippocampal neurons fire synchronously in a population at low frequencies and burst individually at high frequencies, with synaptic plasticity thought to depend on the interplay of these firing patterns. This study investigated synaptic plasticity in the hippocampal CA1 region induced by synaptic input with bursts superimposed on low-frequency rhythms. Low-frequency stimulation (LFS) was varied from 0.5 to 5 Hz, and various numbers of bursts (3–1000) consisting of 2–4 pulses at 100 Hz were superimposed on LFS. The patterned stimuli with 1-Hz LFS effectively induced synaptic plasticity. The direction and magnitude of plasticity depended on the number of bursts. We identified key roles for adenosine A1 receptors and GABAergic signaling in regulating synaptic plasticity. The blockade of adenosine A1 receptors increased the magnitude of long-term potentiation induced by specific burst patterns and differentially affected synaptic plasticity induced by 1-Hz LFS. Through its interactions with hippocampal rhythms and inhibitory circuits, adenosine elevated extracellularly during conditioning stimuli regulated the magnitude and direction of synaptic plasticity. This study proposes hypotheses for the role of adenosine in the modulation of synaptic plasticity, which maintains the balance between potentiation and depression in hippocampal circuits.
期刊介绍:
The international journal publishing original full-length research articles, short communications, technical notes, and reviews on all aspects of neuroscience
Neuroscience Research is an international journal for high quality articles in all branches of neuroscience, from the molecular to the behavioral levels. The journal is published in collaboration with the Japan Neuroscience Society and is open to all contributors in the world.