Jipeng Fei, Xuan Zhang, Di Han, Yue Lei, Fei Xie, Kai Zhou, See-Wee Koh, Junyu Ge, Hao Zhou, Xingli Wang, Xinghui Wu, Jun-Yan Tan, Yuheng Gu, Yongping Long, Zhi Hui Koh, Su Wang, Panwei Du, Tangwei Mi, Bing-Feng Ng, Lili Cai, Chi Feng, Qiaoqiang Gan, Hong Li
{"title":"通过合理设计热光学和传质特性,使被动冷却涂料成为可能","authors":"Jipeng Fei, Xuan Zhang, Di Han, Yue Lei, Fei Xie, Kai Zhou, See-Wee Koh, Junyu Ge, Hao Zhou, Xingli Wang, Xinghui Wu, Jun-Yan Tan, Yuheng Gu, Yongping Long, Zhi Hui Koh, Su Wang, Panwei Du, Tangwei Mi, Bing-Feng Ng, Lili Cai, Chi Feng, Qiaoqiang Gan, Hong Li","doi":"10.1126/science.adt3372","DOIUrl":null,"url":null,"abstract":"<div >Integrating radiative and evaporative cooling shows promise for enhancing passive cooling, but durable self-curing integrated cooling paints remain underdeveloped. We designed a modified cementitious structure with advanced thermal-optical and mass transfer properties, boosting cooling power while ensuring durability, mechanical strength, and broad adhesion. The paint achieves 88 to 92% solar reflectance (depending on wetting), 95% atmospheric window emittance, ~30% water retention, and self-replenishing properties, maintaining stable optical performance even when wet. Field tests in tropical Singapore demonstrated superior cooling performance compared with commercial white paints. Pilot-scale demonstrations highlighted consistent electricity savings under varying weather conditions, supported by theoretical modeling. By leveraging sustainable water evaporation and thermal radiation, this paint offers a practical and long-term solution for mitigating the urban heat island effect.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"388 6751","pages":""},"PeriodicalIF":45.8000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Passive cooling paint enabled by rational design of thermal-optical and mass transfer properties\",\"authors\":\"Jipeng Fei, Xuan Zhang, Di Han, Yue Lei, Fei Xie, Kai Zhou, See-Wee Koh, Junyu Ge, Hao Zhou, Xingli Wang, Xinghui Wu, Jun-Yan Tan, Yuheng Gu, Yongping Long, Zhi Hui Koh, Su Wang, Panwei Du, Tangwei Mi, Bing-Feng Ng, Lili Cai, Chi Feng, Qiaoqiang Gan, Hong Li\",\"doi\":\"10.1126/science.adt3372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Integrating radiative and evaporative cooling shows promise for enhancing passive cooling, but durable self-curing integrated cooling paints remain underdeveloped. We designed a modified cementitious structure with advanced thermal-optical and mass transfer properties, boosting cooling power while ensuring durability, mechanical strength, and broad adhesion. The paint achieves 88 to 92% solar reflectance (depending on wetting), 95% atmospheric window emittance, ~30% water retention, and self-replenishing properties, maintaining stable optical performance even when wet. Field tests in tropical Singapore demonstrated superior cooling performance compared with commercial white paints. Pilot-scale demonstrations highlighted consistent electricity savings under varying weather conditions, supported by theoretical modeling. By leveraging sustainable water evaporation and thermal radiation, this paint offers a practical and long-term solution for mitigating the urban heat island effect.</div>\",\"PeriodicalId\":21678,\"journal\":{\"name\":\"Science\",\"volume\":\"388 6751\",\"pages\":\"\"},\"PeriodicalIF\":45.8000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/science.adt3372\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adt3372","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Passive cooling paint enabled by rational design of thermal-optical and mass transfer properties
Integrating radiative and evaporative cooling shows promise for enhancing passive cooling, but durable self-curing integrated cooling paints remain underdeveloped. We designed a modified cementitious structure with advanced thermal-optical and mass transfer properties, boosting cooling power while ensuring durability, mechanical strength, and broad adhesion. The paint achieves 88 to 92% solar reflectance (depending on wetting), 95% atmospheric window emittance, ~30% water retention, and self-replenishing properties, maintaining stable optical performance even when wet. Field tests in tropical Singapore demonstrated superior cooling performance compared with commercial white paints. Pilot-scale demonstrations highlighted consistent electricity savings under varying weather conditions, supported by theoretical modeling. By leveraging sustainable water evaporation and thermal radiation, this paint offers a practical and long-term solution for mitigating the urban heat island effect.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.