Jiuxiang Song, Xiaoke Chai, Xuemin Zhang, Zeping Lv, Feng Wan, Yi Yang, Xinying Shan, Jizhong Liu
{"title":"HEGNet:运动想象与实际运动的脑电与肌电融合解码方法。","authors":"Jiuxiang Song, Xiaoke Chai, Xuemin Zhang, Zeping Lv, Feng Wan, Yi Yang, Xinying Shan, Jizhong Liu","doi":"10.1080/10255842.2025.2512877","DOIUrl":null,"url":null,"abstract":"<p><p>The widespread adoption od brain-computer interface (BCI) has been hindered by the limited classification accuracy of electroencephalography (EEG) signals alone. This study proposes a novel BCI model, HEGNet, that addresses this challenge by fusing EEG and electromyography (EMG) signals. HEGNet incorporates an EMG feature extraction component to mitigate the inherent instability and low signal-to-noise ratio limitations of relying solely on EEG data. Additionally, HEGNet employs a feature fusion module to dynamically adjust the focus on EEG and EMG features, thereby enhancing its overall robustness. These findings suggest that EMG information can serve as a valuable supplement to EEG data.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-14"},"PeriodicalIF":1.7000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HEGNet: EEG and EMG fusion decoding method in motor imagery and actual movement.\",\"authors\":\"Jiuxiang Song, Xiaoke Chai, Xuemin Zhang, Zeping Lv, Feng Wan, Yi Yang, Xinying Shan, Jizhong Liu\",\"doi\":\"10.1080/10255842.2025.2512877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The widespread adoption od brain-computer interface (BCI) has been hindered by the limited classification accuracy of electroencephalography (EEG) signals alone. This study proposes a novel BCI model, HEGNet, that addresses this challenge by fusing EEG and electromyography (EMG) signals. HEGNet incorporates an EMG feature extraction component to mitigate the inherent instability and low signal-to-noise ratio limitations of relying solely on EEG data. Additionally, HEGNet employs a feature fusion module to dynamically adjust the focus on EEG and EMG features, thereby enhancing its overall robustness. These findings suggest that EMG information can serve as a valuable supplement to EEG data.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2025.2512877\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2512877","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
HEGNet: EEG and EMG fusion decoding method in motor imagery and actual movement.
The widespread adoption od brain-computer interface (BCI) has been hindered by the limited classification accuracy of electroencephalography (EEG) signals alone. This study proposes a novel BCI model, HEGNet, that addresses this challenge by fusing EEG and electromyography (EMG) signals. HEGNet incorporates an EMG feature extraction component to mitigate the inherent instability and low signal-to-noise ratio limitations of relying solely on EEG data. Additionally, HEGNet employs a feature fusion module to dynamically adjust the focus on EEG and EMG features, thereby enhancing its overall robustness. These findings suggest that EMG information can serve as a valuable supplement to EEG data.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.