噻吩嘧啶甘胺嘧啶靶向恶性疟原虫细胞色素b的QO位点。

IF 3.8 2区 医学 Q2 CHEMISTRY, MEDICINAL
ACS Infectious Diseases Pub Date : 2025-06-13 Epub Date: 2025-06-03 DOI:10.1021/acsinfecdis.5c00259
Natalie Wiedemar, Rachel Milne, Sandra Carvalho, Stephen Patterson, Mike Bodkin, Nicolas Masurier, Vincent Lisowski, Nicolas Primas, Pierre Verhaeghe, Graeme M Sloan, Susan Wyllie
{"title":"噻吩嘧啶甘胺嘧啶靶向恶性疟原虫细胞色素b的QO位点。","authors":"Natalie Wiedemar, Rachel Milne, Sandra Carvalho, Stephen Patterson, Mike Bodkin, Nicolas Masurier, Vincent Lisowski, Nicolas Primas, Pierre Verhaeghe, Graeme M Sloan, Susan Wyllie","doi":"10.1021/acsinfecdis.5c00259","DOIUrl":null,"url":null,"abstract":"<p><p>Chemotherapy remains a key component of the arsenal of tools to fight malaria. Specifically, new drugs with diverse mechanism(s) of action are required to combat existing drug resistance. Here, we describe comprehensive studies to determine the molecular target(s) of gamhépathiopine, a thienopyrimidinone showing promise for the treatment of malaria. <i>In vitro</i> evolution of gamhépathiopine resistance and whole genome analyses identified mutations within the Q<sub>O</sub> site of <i>Plasmodium falciparum</i> cytochrome <i>b</i>, part of complex III of the electron transport chain. Subsequent biochemical assays demonstrated that gamhépathiopine directly inhibits complex III activity. Furthermore, exogenous expression of <i>Saccharomyces cerevisiae</i> dihydroorotate dehydrogenase, known to render the electron transport chain dispensable in <i>Plasmodium</i>, results in complete abrogation of gamhépathiopine activity. Cross-resistance profiling and docking studies indicate that gamhépathiopine occupies a similar, but not identical, binding pose to the established Q<sub>O</sub>-targeting antimalarial atovaquone. The implications of these findings for the future development of gamhépathiopine are discussed.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":"1719-1728"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12172035/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Thienopyrimidinone Gamhépathiopine Targets the Q<sub>O</sub> Site of <i>Plasmodium falciparum</i> Cytochrome <i>b</i>.\",\"authors\":\"Natalie Wiedemar, Rachel Milne, Sandra Carvalho, Stephen Patterson, Mike Bodkin, Nicolas Masurier, Vincent Lisowski, Nicolas Primas, Pierre Verhaeghe, Graeme M Sloan, Susan Wyllie\",\"doi\":\"10.1021/acsinfecdis.5c00259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chemotherapy remains a key component of the arsenal of tools to fight malaria. Specifically, new drugs with diverse mechanism(s) of action are required to combat existing drug resistance. Here, we describe comprehensive studies to determine the molecular target(s) of gamhépathiopine, a thienopyrimidinone showing promise for the treatment of malaria. <i>In vitro</i> evolution of gamhépathiopine resistance and whole genome analyses identified mutations within the Q<sub>O</sub> site of <i>Plasmodium falciparum</i> cytochrome <i>b</i>, part of complex III of the electron transport chain. Subsequent biochemical assays demonstrated that gamhépathiopine directly inhibits complex III activity. Furthermore, exogenous expression of <i>Saccharomyces cerevisiae</i> dihydroorotate dehydrogenase, known to render the electron transport chain dispensable in <i>Plasmodium</i>, results in complete abrogation of gamhépathiopine activity. Cross-resistance profiling and docking studies indicate that gamhépathiopine occupies a similar, but not identical, binding pose to the established Q<sub>O</sub>-targeting antimalarial atovaquone. The implications of these findings for the future development of gamhépathiopine are discussed.</p>\",\"PeriodicalId\":17,\"journal\":{\"name\":\"ACS Infectious Diseases\",\"volume\":\" \",\"pages\":\"1719-1728\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12172035/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acsinfecdis.5c00259\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.5c00259","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

化疗仍然是抗击疟疾工具库中的一个关键组成部分。具体来说,需要具有多种作用机制的新药来对抗现有的耐药性。在这里,我们描述了全面的研究,以确定gamhsamuthanopiopine的分子靶标(s),这是一种噻吩嘧啶类药物,有望治疗疟疾。在体外进化和全基因组分析中发现恶性疟原虫细胞色素b的QO位点发生突变,这是电子传递链复合体III的一部分。随后的生化分析表明,gamhsamupathiopine直接抑制复合物III的活性。此外,已知在疟原虫中使电子传递链不可用的酿酒酵母二氢酸脱氢酶的外源表达导致gamhsamopathiopine活性完全丧失。交叉抗性分析和对接研究表明,gamhsamatiopine与已建立的qo靶向抗疟药物阿托伐醌具有相似但不完全相同的结合姿态。本文还讨论了这些发现对gamhsamatiopine未来发展的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Thienopyrimidinone Gamhépathiopine Targets the QO Site of Plasmodium falciparum Cytochrome b.

Chemotherapy remains a key component of the arsenal of tools to fight malaria. Specifically, new drugs with diverse mechanism(s) of action are required to combat existing drug resistance. Here, we describe comprehensive studies to determine the molecular target(s) of gamhépathiopine, a thienopyrimidinone showing promise for the treatment of malaria. In vitro evolution of gamhépathiopine resistance and whole genome analyses identified mutations within the QO site of Plasmodium falciparum cytochrome b, part of complex III of the electron transport chain. Subsequent biochemical assays demonstrated that gamhépathiopine directly inhibits complex III activity. Furthermore, exogenous expression of Saccharomyces cerevisiae dihydroorotate dehydrogenase, known to render the electron transport chain dispensable in Plasmodium, results in complete abrogation of gamhépathiopine activity. Cross-resistance profiling and docking studies indicate that gamhépathiopine occupies a similar, but not identical, binding pose to the established QO-targeting antimalarial atovaquone. The implications of these findings for the future development of gamhépathiopine are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Infectious Diseases
ACS Infectious Diseases CHEMISTRY, MEDICINALINFECTIOUS DISEASES&nb-INFECTIOUS DISEASES
CiteScore
9.70
自引率
3.80%
发文量
213
期刊介绍: ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to: * Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials. * Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets. * Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance. * Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents. * Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota. * Small molecule vaccine adjuvants for infectious disease. * Viral and bacterial biochemistry and molecular biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信