可再生多元醇的光化学与热巯基“点击化学”在聚氨酯中的应用

IF 1.9 4区 农林科学 Q3 CHEMISTRY, APPLIED
Maha L. Shrestha, Juganta K. Roy, Mihail Ionescu, Jerzy Leszczynski
{"title":"可再生多元醇的光化学与热巯基“点击化学”在聚氨酯中的应用","authors":"Maha L. Shrestha,&nbsp;Juganta K. Roy,&nbsp;Mihail Ionescu,&nbsp;Jerzy Leszczynski","doi":"10.1002/aocs.12937","DOIUrl":null,"url":null,"abstract":"<p>The primary goal of the study was to compare the efficacy of two approaches, photochemical and thermal, in producing polyols from renewable soybean oil through thiol-ene reactions. The thiol-ene reaction was initiated with UV light in the presence of 2-hydroxy-2-methylpropiophenone as a photo-initiator or via a thermal pathway utilizing radical initiator 2,2′-Azobis(2-methylpropionitrile). The resulting polyols were analyzed using standard analytical techniques including Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopies. It was observed that the polyols obtained through the photochemical route exhibited better outcome compared with those synthesized using the thermal treatment. Additionally, we employed computational chemistry technique using density functional theory (DFT) calculation to get insights into various product yields. The DFT results revealed that the hydrogen bond network likely contributed to the improved stability, hence obtained higher product yield of the polyol MSBO-TMPAE compared with that of MSBO-GAE. Our study also focuses on applying the synthesized polyols in polyurethane rigid foams and casts. The polyurethanes prepared from these polyols have comparable thermal and mechanical properties to that of the commercially available polyurethanes.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"102 6","pages":"973-983"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photochemical versus thermal thiol-ene “click chemistry” for renewable polyols with application in polyurethanes\",\"authors\":\"Maha L. Shrestha,&nbsp;Juganta K. Roy,&nbsp;Mihail Ionescu,&nbsp;Jerzy Leszczynski\",\"doi\":\"10.1002/aocs.12937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The primary goal of the study was to compare the efficacy of two approaches, photochemical and thermal, in producing polyols from renewable soybean oil through thiol-ene reactions. The thiol-ene reaction was initiated with UV light in the presence of 2-hydroxy-2-methylpropiophenone as a photo-initiator or via a thermal pathway utilizing radical initiator 2,2′-Azobis(2-methylpropionitrile). The resulting polyols were analyzed using standard analytical techniques including Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopies. It was observed that the polyols obtained through the photochemical route exhibited better outcome compared with those synthesized using the thermal treatment. Additionally, we employed computational chemistry technique using density functional theory (DFT) calculation to get insights into various product yields. The DFT results revealed that the hydrogen bond network likely contributed to the improved stability, hence obtained higher product yield of the polyol MSBO-TMPAE compared with that of MSBO-GAE. Our study also focuses on applying the synthesized polyols in polyurethane rigid foams and casts. The polyurethanes prepared from these polyols have comparable thermal and mechanical properties to that of the commercially available polyurethanes.</p>\",\"PeriodicalId\":17182,\"journal\":{\"name\":\"Journal of the American Oil Chemists Society\",\"volume\":\"102 6\",\"pages\":\"973-983\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Oil Chemists Society\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12937\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12937","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究的主要目的是比较光化学和热化学两种方法通过硫醇-烯反应从可再生大豆油中生产多元醇的效果。在紫外光下,以2-羟基-2-甲基丙烯酮作为光引发剂,或利用自由基引发剂2,2 ' -偶氮双(2-甲基丙腈)通过热途径引发巯基反应。使用傅立叶变换红外(FT-IR)和核磁共振(NMR)光谱等标准分析技术对所得多元醇进行分析。结果表明,光化学合成的多元醇比热处理合成的多元醇效果更好。此外,我们采用计算化学技术,使用密度泛函理论(DFT)计算来深入了解各种产品收率。DFT结果表明,氢键网络可能有助于提高稳定性,因此多元醇MSBO-TMPAE的产率比MSBO-GAE高。我们还研究了合成的多元醇在聚氨酯硬质泡沫和铸件中的应用。由这些多元醇制备的聚氨酯具有与市售聚氨酯相当的热性能和机械性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photochemical versus thermal thiol-ene “click chemistry” for renewable polyols with application in polyurethanes

The primary goal of the study was to compare the efficacy of two approaches, photochemical and thermal, in producing polyols from renewable soybean oil through thiol-ene reactions. The thiol-ene reaction was initiated with UV light in the presence of 2-hydroxy-2-methylpropiophenone as a photo-initiator or via a thermal pathway utilizing radical initiator 2,2′-Azobis(2-methylpropionitrile). The resulting polyols were analyzed using standard analytical techniques including Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopies. It was observed that the polyols obtained through the photochemical route exhibited better outcome compared with those synthesized using the thermal treatment. Additionally, we employed computational chemistry technique using density functional theory (DFT) calculation to get insights into various product yields. The DFT results revealed that the hydrogen bond network likely contributed to the improved stability, hence obtained higher product yield of the polyol MSBO-TMPAE compared with that of MSBO-GAE. Our study also focuses on applying the synthesized polyols in polyurethane rigid foams and casts. The polyurethanes prepared from these polyols have comparable thermal and mechanical properties to that of the commercially available polyurethanes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
5.00%
发文量
95
审稿时长
2.4 months
期刊介绍: The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate. JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of year­to­year, environmental, and/ or cultivar variations through use of appropriate statistical analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信