大功率光纤激光对架空接触线路结冰熔化特性的研究

IF 4.6 2区 物理与天体物理 Q1 OPTICS
Yaqi Fang , Hao Zeng , Nnditshedzeni Eric Maluta , Weisheng Liu , Wahab Ali Shah , Xiaoxing Zhang
{"title":"大功率光纤激光对架空接触线路结冰熔化特性的研究","authors":"Yaqi Fang ,&nbsp;Hao Zeng ,&nbsp;Nnditshedzeni Eric Maluta ,&nbsp;Weisheng Liu ,&nbsp;Wahab Ali Shah ,&nbsp;Xiaoxing Zhang","doi":"10.1016/j.optlastec.2025.113297","DOIUrl":null,"url":null,"abstract":"<div><div>The issue of icing on overhead contact lines (OCLs) seriously affects the safety and efficiency of railway transportation, and existing de-icing methods fail to meet the needs of electrified railways. In this paper, a high-power continuous fiber laser is used to conduct numerical simulations and melting ice experiments on OCLs ice-covered samples. The melting characteristics of ice layer are studied under different laser powers, scanning speeds, and laser beam focal positions. The results show that laser energy with a wavelength of 1.08 μm can penetrate the ice layer and generate a larger influence area in the direction of laser irradiation. As the laser power increases from 3 kW to 6 kW, the melting depth, top and bottom melting width grow from 4.1 mm, 0.9 mm, and 0.1 mm to 5.8 mm, 1.6 mm, and 0.2 mm (gains of 41.5 %, 77.8 %, and 100 %). At 6 kW, the melting behavior achieves maximum melting and heat transfer efficiency of 313.2 mm<sup>3</sup>/s and 14.6 %, and a minimum energy consumption of 19.2 J/mm<sup>3</sup>. Lowering the scanning speed from 60 mm/s to 15 mm/s increases the melting depth from 5.8 mm to 19.9 mm (a gain of 243.1 %), the top melting width from 1.6 mm to 3.1 mm (a gain of 93.8 %), and the bottom width from 0.2 mm to 0.6 mm (a gain of 200 %). There are maximum melting and heat transfer efficiencies of 552.2 mm<sup>3</sup>/s and 25.8 % at 15 mm/s, and minimum melting energy consumption of 10.9 J/mm<sup>3</sup>. The optimal focal position (Z = 20 mm) yields a melting depth of 7 mm, top and bottom melting widths of 2.5 mm and 0.5 mm, respectively, with the highest melting efficiency of 630 mm<sup>3</sup>/s, heat transfer efficiency of 29.4 %, and the lowest energy consumption of 9.5 J/mm<sup>3</sup>. The laser-based de-icing method proposed in this paper provides an efficient and feasible new strategy for OCLs de-icing.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"191 ","pages":"Article 113297"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the melting characteristics of icing on overhead contact lines using high-power fiber laser\",\"authors\":\"Yaqi Fang ,&nbsp;Hao Zeng ,&nbsp;Nnditshedzeni Eric Maluta ,&nbsp;Weisheng Liu ,&nbsp;Wahab Ali Shah ,&nbsp;Xiaoxing Zhang\",\"doi\":\"10.1016/j.optlastec.2025.113297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The issue of icing on overhead contact lines (OCLs) seriously affects the safety and efficiency of railway transportation, and existing de-icing methods fail to meet the needs of electrified railways. In this paper, a high-power continuous fiber laser is used to conduct numerical simulations and melting ice experiments on OCLs ice-covered samples. The melting characteristics of ice layer are studied under different laser powers, scanning speeds, and laser beam focal positions. The results show that laser energy with a wavelength of 1.08 μm can penetrate the ice layer and generate a larger influence area in the direction of laser irradiation. As the laser power increases from 3 kW to 6 kW, the melting depth, top and bottom melting width grow from 4.1 mm, 0.9 mm, and 0.1 mm to 5.8 mm, 1.6 mm, and 0.2 mm (gains of 41.5 %, 77.8 %, and 100 %). At 6 kW, the melting behavior achieves maximum melting and heat transfer efficiency of 313.2 mm<sup>3</sup>/s and 14.6 %, and a minimum energy consumption of 19.2 J/mm<sup>3</sup>. Lowering the scanning speed from 60 mm/s to 15 mm/s increases the melting depth from 5.8 mm to 19.9 mm (a gain of 243.1 %), the top melting width from 1.6 mm to 3.1 mm (a gain of 93.8 %), and the bottom width from 0.2 mm to 0.6 mm (a gain of 200 %). There are maximum melting and heat transfer efficiencies of 552.2 mm<sup>3</sup>/s and 25.8 % at 15 mm/s, and minimum melting energy consumption of 10.9 J/mm<sup>3</sup>. The optimal focal position (Z = 20 mm) yields a melting depth of 7 mm, top and bottom melting widths of 2.5 mm and 0.5 mm, respectively, with the highest melting efficiency of 630 mm<sup>3</sup>/s, heat transfer efficiency of 29.4 %, and the lowest energy consumption of 9.5 J/mm<sup>3</sup>. The laser-based de-icing method proposed in this paper provides an efficient and feasible new strategy for OCLs de-icing.</div></div>\",\"PeriodicalId\":19511,\"journal\":{\"name\":\"Optics and Laser Technology\",\"volume\":\"191 \",\"pages\":\"Article 113297\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Laser Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399225008886\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399225008886","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

接触网结冰问题严重影响铁路运输的安全和效率,现有的除冰方式已不能满足电气化铁路的需要。本文利用大功率连续光纤激光器对OCLs覆冰样品进行数值模拟和融冰实验。研究了不同激光功率、扫描速度和激光束聚焦位置下的冰层融化特性。结果表明,波长为1.08 μm的激光能量能够穿透冰层,并在激光照射方向上产生较大的影响区域。当激光功率从3 kW增加到6 kW时,熔化深度、顶部和底部的熔化宽度分别从4.1 mm、0.9 mm和0.1 mm增加到5.8 mm、1.6 mm和0.2 mm(增益分别为41.5%、77.8%和100%)。在6 kW时,熔体的最大熔化效率和传热效率分别为313.2 mm3/s和14.6%,最小能耗为19.2 J/mm3。将扫描速度从60 mm/s降低到15 mm/s,熔深从5.8 mm增加到19.9 mm(增益为243.1%),熔顶宽度从1.6 mm增加到3.1 mm(增益为93.8%),熔底宽度从0.2 mm增加到0.6 mm(增益为200%)。熔炼效率最高为552.2 mm3/s,熔炼效率为25.8%,熔炼能耗最低为10.9 J/mm3。在最佳焦点位置(Z = 20 mm)下,熔化深度为7 mm,顶部和底部的熔化宽度分别为2.5 mm和0.5 mm,最高的熔化效率为630 mm3/s,换热效率为29.4%,最低的能耗为9.5 J/mm3。本文提出的基于激光的除冰方法为ocl除冰提供了一种高效可行的新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the melting characteristics of icing on overhead contact lines using high-power fiber laser
The issue of icing on overhead contact lines (OCLs) seriously affects the safety and efficiency of railway transportation, and existing de-icing methods fail to meet the needs of electrified railways. In this paper, a high-power continuous fiber laser is used to conduct numerical simulations and melting ice experiments on OCLs ice-covered samples. The melting characteristics of ice layer are studied under different laser powers, scanning speeds, and laser beam focal positions. The results show that laser energy with a wavelength of 1.08 μm can penetrate the ice layer and generate a larger influence area in the direction of laser irradiation. As the laser power increases from 3 kW to 6 kW, the melting depth, top and bottom melting width grow from 4.1 mm, 0.9 mm, and 0.1 mm to 5.8 mm, 1.6 mm, and 0.2 mm (gains of 41.5 %, 77.8 %, and 100 %). At 6 kW, the melting behavior achieves maximum melting and heat transfer efficiency of 313.2 mm3/s and 14.6 %, and a minimum energy consumption of 19.2 J/mm3. Lowering the scanning speed from 60 mm/s to 15 mm/s increases the melting depth from 5.8 mm to 19.9 mm (a gain of 243.1 %), the top melting width from 1.6 mm to 3.1 mm (a gain of 93.8 %), and the bottom width from 0.2 mm to 0.6 mm (a gain of 200 %). There are maximum melting and heat transfer efficiencies of 552.2 mm3/s and 25.8 % at 15 mm/s, and minimum melting energy consumption of 10.9 J/mm3. The optimal focal position (Z = 20 mm) yields a melting depth of 7 mm, top and bottom melting widths of 2.5 mm and 0.5 mm, respectively, with the highest melting efficiency of 630 mm3/s, heat transfer efficiency of 29.4 %, and the lowest energy consumption of 9.5 J/mm3. The laser-based de-icing method proposed in this paper provides an efficient and feasible new strategy for OCLs de-icing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
10.00%
发文量
1060
审稿时长
3.4 months
期刊介绍: Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication. The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas: •development in all types of lasers •developments in optoelectronic devices and photonics •developments in new photonics and optical concepts •developments in conventional optics, optical instruments and components •techniques of optical metrology, including interferometry and optical fibre sensors •LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow •applications of lasers to materials processing, optical NDT display (including holography) and optical communication •research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume) •developments in optical computing and optical information processing •developments in new optical materials •developments in new optical characterization methods and techniques •developments in quantum optics •developments in light assisted micro and nanofabrication methods and techniques •developments in nanophotonics and biophotonics •developments in imaging processing and systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信