{"title":"基于CFD-DEM的多因素条件下间隙级配土渗流宏微观研究","authors":"Zhibin Liu , Haihua Zhang , Jiangu Qian , Chuang Zhou","doi":"10.1016/j.compgeo.2025.107381","DOIUrl":null,"url":null,"abstract":"<div><div>Internal erosion induces alterations in the initial microstructure of soils, simultaneously affecting physical, hydraulic, and mechanical properties. The initial soil composition plays a crucial role in governing the initiation and progression of seepage-induced suffusion. This study employs the controlled variable method to develop granular soil models with varying particle size ratios, initial fine particle contents, and coarse particle shapes. Seepage suffusion simulations coupled with microstructural analyses are conducted using the CFD-DEM approach. Results demonstrate that particle size ratio, fine particle content, and coarse particle shape exert distinct influences on cumulative erosion mass, fine particle distribution, contact fabric, and mechanical redundancy at both macroscopic and microscopic scales. This numerical investigation advances the fundamental understanding of internal erosion mechanisms and informs the development of micro-mechanical constitutive models. Furthermore, for binary granular media composed of coarse and fine particles, careful control of the particle size ratio and fine content is recommended when utilizing gap-graded soils in embankment and dam construction to improve structural resilience and resistance to internal erosion.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"186 ","pages":"Article 107381"},"PeriodicalIF":6.2000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Macro- and micro-scale investigation of suffusion in gap-graded soils under multiple factors using CFD-DEM\",\"authors\":\"Zhibin Liu , Haihua Zhang , Jiangu Qian , Chuang Zhou\",\"doi\":\"10.1016/j.compgeo.2025.107381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Internal erosion induces alterations in the initial microstructure of soils, simultaneously affecting physical, hydraulic, and mechanical properties. The initial soil composition plays a crucial role in governing the initiation and progression of seepage-induced suffusion. This study employs the controlled variable method to develop granular soil models with varying particle size ratios, initial fine particle contents, and coarse particle shapes. Seepage suffusion simulations coupled with microstructural analyses are conducted using the CFD-DEM approach. Results demonstrate that particle size ratio, fine particle content, and coarse particle shape exert distinct influences on cumulative erosion mass, fine particle distribution, contact fabric, and mechanical redundancy at both macroscopic and microscopic scales. This numerical investigation advances the fundamental understanding of internal erosion mechanisms and informs the development of micro-mechanical constitutive models. Furthermore, for binary granular media composed of coarse and fine particles, careful control of the particle size ratio and fine content is recommended when utilizing gap-graded soils in embankment and dam construction to improve structural resilience and resistance to internal erosion.</div></div>\",\"PeriodicalId\":55217,\"journal\":{\"name\":\"Computers and Geotechnics\",\"volume\":\"186 \",\"pages\":\"Article 107381\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266352X25003301\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X25003301","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Macro- and micro-scale investigation of suffusion in gap-graded soils under multiple factors using CFD-DEM
Internal erosion induces alterations in the initial microstructure of soils, simultaneously affecting physical, hydraulic, and mechanical properties. The initial soil composition plays a crucial role in governing the initiation and progression of seepage-induced suffusion. This study employs the controlled variable method to develop granular soil models with varying particle size ratios, initial fine particle contents, and coarse particle shapes. Seepage suffusion simulations coupled with microstructural analyses are conducted using the CFD-DEM approach. Results demonstrate that particle size ratio, fine particle content, and coarse particle shape exert distinct influences on cumulative erosion mass, fine particle distribution, contact fabric, and mechanical redundancy at both macroscopic and microscopic scales. This numerical investigation advances the fundamental understanding of internal erosion mechanisms and informs the development of micro-mechanical constitutive models. Furthermore, for binary granular media composed of coarse and fine particles, careful control of the particle size ratio and fine content is recommended when utilizing gap-graded soils in embankment and dam construction to improve structural resilience and resistance to internal erosion.
期刊介绍:
The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.