{"title":"脂肪酸去饱和酶1敲低促进糖尿病角膜上皮的创面愈合和功能恢复。","authors":"Yangqi Zhao, Yi Dong, Qingqing Zheng, Yue Zhao, Yingjie Ni, Peijin Qiu, Chuannan Chen, Mengyue Xu, Chaoyang Hong, Ting Shen","doi":"10.1167/iovs.66.6.6","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Fatty acid desaturase 1 (FADS1) is significantly and specifically upregulated following diabetic corneal injury. However, its role in diabetic keratopathy remains unclear. This study aimed to investigate the impact of FADS1 on wound healing and functional recovery of the diabetic corneal epithelium and explore its potential mechanisms.</p><p><strong>Methods: </strong>Using high-glucose-induced corneal epithelial cells and a streptozotocin-induced type 1 diabetic mouse model, FADS1 expression was suppressed via FADS1 small interfering RNA (siRNA). Cell migration was assessed using scratch and transwell assays. Wound healing and functional recovery of the corneal epithelium were evaluated using sodium fluorescein staining, anterior segment optical coherence tomography, hematoxylin and eosin staining, and immunofluorescence staining.</p><p><strong>Results: </strong>FADS1 knockdown promoted wound healing and functional recovery of the diabetic corneal epithelium both in vivo and in vitro. Suppression of FADS1 enhanced high-glucose-induced corneal epithelial cell migration, which was dependent on elevated levels of the upstream metabolite γ-linolenic acid. This effect was mediated through the activation of the mitogen-activated protein kinase signaling pathway and the accumulation of autophagosomes.</p><p><strong>Conclusions: </strong>After diabetic corneal epithelial injury, FADS1 expression is specifically upregulated. Knockdown of FADS1 promotes wound healing and functional recovery, suggesting a novel therapeutic strategy for diabetic keratopathy.</p>","PeriodicalId":14620,"journal":{"name":"Investigative ophthalmology & visual science","volume":"66 6","pages":"6"},"PeriodicalIF":4.7000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12136103/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fatty Acid Desaturase 1 Knockdown Promotes Wound Healing and Functional Recovery of the Corneal Epithelium in Diabetes.\",\"authors\":\"Yangqi Zhao, Yi Dong, Qingqing Zheng, Yue Zhao, Yingjie Ni, Peijin Qiu, Chuannan Chen, Mengyue Xu, Chaoyang Hong, Ting Shen\",\"doi\":\"10.1167/iovs.66.6.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Fatty acid desaturase 1 (FADS1) is significantly and specifically upregulated following diabetic corneal injury. However, its role in diabetic keratopathy remains unclear. This study aimed to investigate the impact of FADS1 on wound healing and functional recovery of the diabetic corneal epithelium and explore its potential mechanisms.</p><p><strong>Methods: </strong>Using high-glucose-induced corneal epithelial cells and a streptozotocin-induced type 1 diabetic mouse model, FADS1 expression was suppressed via FADS1 small interfering RNA (siRNA). Cell migration was assessed using scratch and transwell assays. Wound healing and functional recovery of the corneal epithelium were evaluated using sodium fluorescein staining, anterior segment optical coherence tomography, hematoxylin and eosin staining, and immunofluorescence staining.</p><p><strong>Results: </strong>FADS1 knockdown promoted wound healing and functional recovery of the diabetic corneal epithelium both in vivo and in vitro. Suppression of FADS1 enhanced high-glucose-induced corneal epithelial cell migration, which was dependent on elevated levels of the upstream metabolite γ-linolenic acid. This effect was mediated through the activation of the mitogen-activated protein kinase signaling pathway and the accumulation of autophagosomes.</p><p><strong>Conclusions: </strong>After diabetic corneal epithelial injury, FADS1 expression is specifically upregulated. Knockdown of FADS1 promotes wound healing and functional recovery, suggesting a novel therapeutic strategy for diabetic keratopathy.</p>\",\"PeriodicalId\":14620,\"journal\":{\"name\":\"Investigative ophthalmology & visual science\",\"volume\":\"66 6\",\"pages\":\"6\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12136103/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Investigative ophthalmology & visual science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1167/iovs.66.6.6\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative ophthalmology & visual science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/iovs.66.6.6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Fatty Acid Desaturase 1 Knockdown Promotes Wound Healing and Functional Recovery of the Corneal Epithelium in Diabetes.
Purpose: Fatty acid desaturase 1 (FADS1) is significantly and specifically upregulated following diabetic corneal injury. However, its role in diabetic keratopathy remains unclear. This study aimed to investigate the impact of FADS1 on wound healing and functional recovery of the diabetic corneal epithelium and explore its potential mechanisms.
Methods: Using high-glucose-induced corneal epithelial cells and a streptozotocin-induced type 1 diabetic mouse model, FADS1 expression was suppressed via FADS1 small interfering RNA (siRNA). Cell migration was assessed using scratch and transwell assays. Wound healing and functional recovery of the corneal epithelium were evaluated using sodium fluorescein staining, anterior segment optical coherence tomography, hematoxylin and eosin staining, and immunofluorescence staining.
Results: FADS1 knockdown promoted wound healing and functional recovery of the diabetic corneal epithelium both in vivo and in vitro. Suppression of FADS1 enhanced high-glucose-induced corneal epithelial cell migration, which was dependent on elevated levels of the upstream metabolite γ-linolenic acid. This effect was mediated through the activation of the mitogen-activated protein kinase signaling pathway and the accumulation of autophagosomes.
Conclusions: After diabetic corneal epithelial injury, FADS1 expression is specifically upregulated. Knockdown of FADS1 promotes wound healing and functional recovery, suggesting a novel therapeutic strategy for diabetic keratopathy.
期刊介绍:
Investigative Ophthalmology & Visual Science (IOVS), published as ready online, is a peer-reviewed academic journal of the Association for Research in Vision and Ophthalmology (ARVO). IOVS features original research, mostly pertaining to clinical and laboratory ophthalmology and vision research in general.