{"title":"乳腺癌分子亚型的双信号探测:协同手性和电荷转移效应提高了准确性","authors":"Xiaomei Mo, Huacheng Li, Xiang Zhong, Meng Li, Menghui Jia, Hongwei Wu, Xiaoran Li, Tao Yi, Chunyan Li* and Xiang Lan*, ","doi":"10.1021/acs.analchem.5c0162010.1021/acs.analchem.5c01620","DOIUrl":null,"url":null,"abstract":"<p >Tumor molecular subtyping is essential for guiding personalized treatment strategies. However, existing detection methods are constrained by complex procedures, prolonged processing times, and high costs. Therefore, the development of rapid and straightforward detection methods remains a critical unmet need. Here, we employed DNA nanotechnology to construct a series of fluorophore-coupled pairs (a chiral BODIPY (cBDP) and a cyanine), revealing intermolecular interactions via various spectroscopic measurements and identifying a pair with unique charge and chirality transfer properties. By the integration of the fluorophore pair as a probe into DNA circuit systems, it can achieve amplification of dual optical signals of circular dichroism (CD) and fluorescence through DNA cascade reaction-controlled dissociation and the formation of the probe. For the practical implementation, we applied this dual-signal detection system for breast cancer molecular subtyping, which proved to successfully detect key biomarkers, estrogen receptor (ER), and human epidermal growth factor receptor 2 (HER2), within 1 h. The receptor-specific spectral responses enabled the rapid classification of four breast cancer molecular subtypes. Particularly, the synergistic effect of charge and chirality transfer proved to contribute to the enhancement of the detection accuracy. Given its versatility and precision, this platform shows significant promise for tumor molecular subtyping and offers potential applications in clinical biomarker detection and personalized therapy.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"97 21","pages":"11298–11306 11298–11306"},"PeriodicalIF":6.7000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-Signal Probing of Molecular Subtypes of Breast Cancer: Synergistic Chirality and Charge-Transfer Effect Enable Enhanced Accuracy\",\"authors\":\"Xiaomei Mo, Huacheng Li, Xiang Zhong, Meng Li, Menghui Jia, Hongwei Wu, Xiaoran Li, Tao Yi, Chunyan Li* and Xiang Lan*, \",\"doi\":\"10.1021/acs.analchem.5c0162010.1021/acs.analchem.5c01620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Tumor molecular subtyping is essential for guiding personalized treatment strategies. However, existing detection methods are constrained by complex procedures, prolonged processing times, and high costs. Therefore, the development of rapid and straightforward detection methods remains a critical unmet need. Here, we employed DNA nanotechnology to construct a series of fluorophore-coupled pairs (a chiral BODIPY (cBDP) and a cyanine), revealing intermolecular interactions via various spectroscopic measurements and identifying a pair with unique charge and chirality transfer properties. By the integration of the fluorophore pair as a probe into DNA circuit systems, it can achieve amplification of dual optical signals of circular dichroism (CD) and fluorescence through DNA cascade reaction-controlled dissociation and the formation of the probe. For the practical implementation, we applied this dual-signal detection system for breast cancer molecular subtyping, which proved to successfully detect key biomarkers, estrogen receptor (ER), and human epidermal growth factor receptor 2 (HER2), within 1 h. The receptor-specific spectral responses enabled the rapid classification of four breast cancer molecular subtypes. Particularly, the synergistic effect of charge and chirality transfer proved to contribute to the enhancement of the detection accuracy. Given its versatility and precision, this platform shows significant promise for tumor molecular subtyping and offers potential applications in clinical biomarker detection and personalized therapy.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"97 21\",\"pages\":\"11298–11306 11298–11306\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.analchem.5c01620\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.5c01620","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Dual-Signal Probing of Molecular Subtypes of Breast Cancer: Synergistic Chirality and Charge-Transfer Effect Enable Enhanced Accuracy
Tumor molecular subtyping is essential for guiding personalized treatment strategies. However, existing detection methods are constrained by complex procedures, prolonged processing times, and high costs. Therefore, the development of rapid and straightforward detection methods remains a critical unmet need. Here, we employed DNA nanotechnology to construct a series of fluorophore-coupled pairs (a chiral BODIPY (cBDP) and a cyanine), revealing intermolecular interactions via various spectroscopic measurements and identifying a pair with unique charge and chirality transfer properties. By the integration of the fluorophore pair as a probe into DNA circuit systems, it can achieve amplification of dual optical signals of circular dichroism (CD) and fluorescence through DNA cascade reaction-controlled dissociation and the formation of the probe. For the practical implementation, we applied this dual-signal detection system for breast cancer molecular subtyping, which proved to successfully detect key biomarkers, estrogen receptor (ER), and human epidermal growth factor receptor 2 (HER2), within 1 h. The receptor-specific spectral responses enabled the rapid classification of four breast cancer molecular subtypes. Particularly, the synergistic effect of charge and chirality transfer proved to contribute to the enhancement of the detection accuracy. Given its versatility and precision, this platform shows significant promise for tumor molecular subtyping and offers potential applications in clinical biomarker detection and personalized therapy.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.