{"title":"可变生产率Hawkes过程的有效非参数估计。","authors":"Sophie Phillips, Frederic Schoenberg","doi":"10.1080/02664763.2024.2426019","DOIUrl":null,"url":null,"abstract":"<p><p>Several approaches to estimating the productivity function for a Hawkes point process with variable productivity are discussed, improved upon, and compared in terms of their root-mean-squared error and computational efficiency for various data sizes, and for binned as well as unbinned data. We find that for unbinned data, a regularized version of the analytic maximum likelihood estimator proposed by Schoenberg is the most accurate but is computationally burdensome. The unregularized version of the estimator is faster to compute but has lower accuracy, though both estimators outperform empirical or binned least squares estimators in terms of root-mean-squared error, especially when the mean productivity is 0.2 or greater. For binned data, binned least squares estimates are highly efficient both in terms of computation time and root-mean-squared error. An extension to estimating transmission time density is discussed, and an application to estimating the productivity of Covid-19 in the United States as a function of time from January 2020 to July 2022 is provided.</p>","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"52 7","pages":"1405-1422"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117874/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficient non-parametric estimation of variable productivity Hawkes processes.\",\"authors\":\"Sophie Phillips, Frederic Schoenberg\",\"doi\":\"10.1080/02664763.2024.2426019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Several approaches to estimating the productivity function for a Hawkes point process with variable productivity are discussed, improved upon, and compared in terms of their root-mean-squared error and computational efficiency for various data sizes, and for binned as well as unbinned data. We find that for unbinned data, a regularized version of the analytic maximum likelihood estimator proposed by Schoenberg is the most accurate but is computationally burdensome. The unregularized version of the estimator is faster to compute but has lower accuracy, though both estimators outperform empirical or binned least squares estimators in terms of root-mean-squared error, especially when the mean productivity is 0.2 or greater. For binned data, binned least squares estimates are highly efficient both in terms of computation time and root-mean-squared error. An extension to estimating transmission time density is discussed, and an application to estimating the productivity of Covid-19 in the United States as a function of time from January 2020 to July 2022 is provided.</p>\",\"PeriodicalId\":15239,\"journal\":{\"name\":\"Journal of Applied Statistics\",\"volume\":\"52 7\",\"pages\":\"1405-1422\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117874/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/02664763.2024.2426019\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02664763.2024.2426019","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Efficient non-parametric estimation of variable productivity Hawkes processes.
Several approaches to estimating the productivity function for a Hawkes point process with variable productivity are discussed, improved upon, and compared in terms of their root-mean-squared error and computational efficiency for various data sizes, and for binned as well as unbinned data. We find that for unbinned data, a regularized version of the analytic maximum likelihood estimator proposed by Schoenberg is the most accurate but is computationally burdensome. The unregularized version of the estimator is faster to compute but has lower accuracy, though both estimators outperform empirical or binned least squares estimators in terms of root-mean-squared error, especially when the mean productivity is 0.2 or greater. For binned data, binned least squares estimates are highly efficient both in terms of computation time and root-mean-squared error. An extension to estimating transmission time density is discussed, and an application to estimating the productivity of Covid-19 in the United States as a function of time from January 2020 to July 2022 is provided.
期刊介绍:
Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.