{"title":"具有相关失效时间的面板二值数据的半参数回归分析。","authors":"Lei Ge, Yang Li, Jianguo Sun","doi":"10.1080/02664763.2024.2428266","DOIUrl":null,"url":null,"abstract":"<p><p>In health and clinical research, panel binary data from recurrent events arise when subjects are surveyed to report occurrence statuses of recurrent events over fixed observation windows. In practice, such data can be cut short by a dependent failure event such as death. For the analysis of panel binary data, tools from generalized linear models overlook the recurrence nature of panel binary data, and other relevant literature does not accommodate the failure time. Motivated by the hospitalization data surveyed from the Health and Retirement Study, we propose a semiparametric joint-modeling-based procedure for analyzing panel binary data with a dependent failure time. For model fitting, we develop a computationally efficient EM algorithm and show the resulting estimates are consistent and asymptotically normal. Theoretical results are provided to enable valid inferences. Simulation studies have confirmed the performance of the proposed method in practical settings. The method is applied to assess important risk factors associated with incidences of hospitalization among the working elderly.</p>","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"52 7","pages":"1423-1445"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117875/pdf/","citationCount":"0","resultStr":"{\"title\":\"Semiparametric regression analysis of panel binary data with a dependent failure time.\",\"authors\":\"Lei Ge, Yang Li, Jianguo Sun\",\"doi\":\"10.1080/02664763.2024.2428266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In health and clinical research, panel binary data from recurrent events arise when subjects are surveyed to report occurrence statuses of recurrent events over fixed observation windows. In practice, such data can be cut short by a dependent failure event such as death. For the analysis of panel binary data, tools from generalized linear models overlook the recurrence nature of panel binary data, and other relevant literature does not accommodate the failure time. Motivated by the hospitalization data surveyed from the Health and Retirement Study, we propose a semiparametric joint-modeling-based procedure for analyzing panel binary data with a dependent failure time. For model fitting, we develop a computationally efficient EM algorithm and show the resulting estimates are consistent and asymptotically normal. Theoretical results are provided to enable valid inferences. Simulation studies have confirmed the performance of the proposed method in practical settings. The method is applied to assess important risk factors associated with incidences of hospitalization among the working elderly.</p>\",\"PeriodicalId\":15239,\"journal\":{\"name\":\"Journal of Applied Statistics\",\"volume\":\"52 7\",\"pages\":\"1423-1445\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117875/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/02664763.2024.2428266\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02664763.2024.2428266","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Semiparametric regression analysis of panel binary data with a dependent failure time.
In health and clinical research, panel binary data from recurrent events arise when subjects are surveyed to report occurrence statuses of recurrent events over fixed observation windows. In practice, such data can be cut short by a dependent failure event such as death. For the analysis of panel binary data, tools from generalized linear models overlook the recurrence nature of panel binary data, and other relevant literature does not accommodate the failure time. Motivated by the hospitalization data surveyed from the Health and Retirement Study, we propose a semiparametric joint-modeling-based procedure for analyzing panel binary data with a dependent failure time. For model fitting, we develop a computationally efficient EM algorithm and show the resulting estimates are consistent and asymptotically normal. Theoretical results are provided to enable valid inferences. Simulation studies have confirmed the performance of the proposed method in practical settings. The method is applied to assess important risk factors associated with incidences of hospitalization among the working elderly.
期刊介绍:
Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.