利用回跳特性评估氮化硅基反馈场效应晶体管的离子灵敏度

IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Prateek Kumar , Naveen Kumar , Ankit Dixit , Md Hasan Raza Ansari , Navjeet Bagga , Navneet Gandhi , P.N. Kondekar , César Pascual García , Vihar Georgiev
{"title":"利用回跳特性评估氮化硅基反馈场效应晶体管的离子灵敏度","authors":"Prateek Kumar ,&nbsp;Naveen Kumar ,&nbsp;Ankit Dixit ,&nbsp;Md Hasan Raza Ansari ,&nbsp;Navjeet Bagga ,&nbsp;Navneet Gandhi ,&nbsp;P.N. Kondekar ,&nbsp;César Pascual García ,&nbsp;Vihar Georgiev","doi":"10.1016/j.sse.2025.109159","DOIUrl":null,"url":null,"abstract":"<div><div>This work discusses the sensitivity response of a feedback field effect transistor-based ion sensor (ISFBFET). To precisely predict the sensing behavior, the Gouy-Chapman-Stern and site-binding methods are used as the principle models in a detailed TCAD study. For charge binding, the deposition of Si<sub>3</sub>N<sub>4</sub> over SiO<sub>2</sub> is used as a sensing element. The behavior of the ISFBFET is discussed against gate work function (Φ<sub>G</sub>) engineering and bulk pH. The performance of the sensor is analyzed using I<sub>DS</sub>-V<sub>DS</sub>, I<sub>DS</sub>-transit time, and snap-back characteristics. Sensitivity is evaluated in terms of constant current and constant voltage using snap-back characteristics and at Φ<sub>G</sub> = 4.4 eV, the highest sensitivity of 2.35 and 405 is obtained. The proposed work can help in designing FBFET based ion-sensors for sensing biomolecules or amino acids.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"229 ","pages":"Article 109159"},"PeriodicalIF":1.4000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of ion-sensitivity of Si3N4 based feedback field effect transistor using snap-back characteristics\",\"authors\":\"Prateek Kumar ,&nbsp;Naveen Kumar ,&nbsp;Ankit Dixit ,&nbsp;Md Hasan Raza Ansari ,&nbsp;Navjeet Bagga ,&nbsp;Navneet Gandhi ,&nbsp;P.N. Kondekar ,&nbsp;César Pascual García ,&nbsp;Vihar Georgiev\",\"doi\":\"10.1016/j.sse.2025.109159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work discusses the sensitivity response of a feedback field effect transistor-based ion sensor (ISFBFET). To precisely predict the sensing behavior, the Gouy-Chapman-Stern and site-binding methods are used as the principle models in a detailed TCAD study. For charge binding, the deposition of Si<sub>3</sub>N<sub>4</sub> over SiO<sub>2</sub> is used as a sensing element. The behavior of the ISFBFET is discussed against gate work function (Φ<sub>G</sub>) engineering and bulk pH. The performance of the sensor is analyzed using I<sub>DS</sub>-V<sub>DS</sub>, I<sub>DS</sub>-transit time, and snap-back characteristics. Sensitivity is evaluated in terms of constant current and constant voltage using snap-back characteristics and at Φ<sub>G</sub> = 4.4 eV, the highest sensitivity of 2.35 and 405 is obtained. The proposed work can help in designing FBFET based ion-sensors for sensing biomolecules or amino acids.</div></div>\",\"PeriodicalId\":21909,\"journal\":{\"name\":\"Solid-state Electronics\",\"volume\":\"229 \",\"pages\":\"Article 109159\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid-state Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038110125001042\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110125001042","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了反馈场效应晶体管离子传感器(isfbet)的灵敏度响应。为了准确预测TCAD的传感行为,采用了gay - chapman - stern和位点结合方法作为主要模型进行了详细的TCAD研究。对于电荷结合,Si3N4在SiO2上的沉积被用作传感元件。根据门功函数(ΦG)工程和整体ph值讨论了ISFBFET的行为。利用IDS-VDS, ids -传输时间和快照回调特性分析了传感器的性能。利用回跳特性对恒流和恒电压进行灵敏度评估,在ΦG = 4.4 eV时,灵敏度最高为2.35和405。这项工作有助于设计基于fbet的离子传感器,用于传感生物分子或氨基酸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of ion-sensitivity of Si3N4 based feedback field effect transistor using snap-back characteristics
This work discusses the sensitivity response of a feedback field effect transistor-based ion sensor (ISFBFET). To precisely predict the sensing behavior, the Gouy-Chapman-Stern and site-binding methods are used as the principle models in a detailed TCAD study. For charge binding, the deposition of Si3N4 over SiO2 is used as a sensing element. The behavior of the ISFBFET is discussed against gate work function (ΦG) engineering and bulk pH. The performance of the sensor is analyzed using IDS-VDS, IDS-transit time, and snap-back characteristics. Sensitivity is evaluated in terms of constant current and constant voltage using snap-back characteristics and at ΦG = 4.4 eV, the highest sensitivity of 2.35 and 405 is obtained. The proposed work can help in designing FBFET based ion-sensors for sensing biomolecules or amino acids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid-state Electronics
Solid-state Electronics 物理-工程:电子与电气
CiteScore
3.00
自引率
5.90%
发文量
212
审稿时长
3 months
期刊介绍: It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信