利用机器学习探索超重相关骨关节炎的遗传特征。

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Zhaohui Jiang, Chunlei Xu, Wei Shi, Zhou Lin, Hui Li, Huafeng Zhang, Zhijun Li
{"title":"利用机器学习探索超重相关骨关节炎的遗传特征。","authors":"Zhaohui Jiang, Chunlei Xu, Wei Shi, Zhou Lin, Hui Li, Huafeng Zhang, Zhijun Li","doi":"10.1080/10255842.2025.2510366","DOIUrl":null,"url":null,"abstract":"<p><p>This investigation employed a synergistic approach integrating bioinformatics and machine learning methodologies to scrutinize overweight-related osteoarthritis characteristic genes (OROCGs). The research team procured gene expression profiles from osteoarthritis (OA) patients' cartilage and meniscus, derived from GEO database datasets GSE98918 and GSE117999. These profiles underwent meticulous examination through differential gene expression (DEG) identification, weighted gene co-expression network analysis (WGCNA), least absolute shrinkage and selection operator (LASSO), support vector machine - recursive feature elimination (SVM-RFE), and single-sample gene set enrichment analysis (ssGSEA), culminating in the identification of six OROCGs. Furthermore, the study unveiled an augmented presence of myeloid-derived suppressor cells (MDSCs) and B cells in overweight-associated OA. The investigators formulated a diagnostic model encompassing pivotal genes related to DNA replication, chronic inflammation, and epigenetics, including CHTH18, CYSLTR2, HSF4, KDM6B, NR4A2, and UCKL1. The model's diagnostic precision was corroborated through receiver operating characteristic (ROC) curves and a nomogram applied to the test set and validation set GSE129147. This model efficaciously delineates the expression alterations and immune infiltration linked to overweight-related OA, thereby nominating these genes as prospective candidates for immunomodulatory therapeutic interventions.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-14"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the genetic characteristics of overweight-related osteoarthritis using machine learning.\",\"authors\":\"Zhaohui Jiang, Chunlei Xu, Wei Shi, Zhou Lin, Hui Li, Huafeng Zhang, Zhijun Li\",\"doi\":\"10.1080/10255842.2025.2510366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This investigation employed a synergistic approach integrating bioinformatics and machine learning methodologies to scrutinize overweight-related osteoarthritis characteristic genes (OROCGs). The research team procured gene expression profiles from osteoarthritis (OA) patients' cartilage and meniscus, derived from GEO database datasets GSE98918 and GSE117999. These profiles underwent meticulous examination through differential gene expression (DEG) identification, weighted gene co-expression network analysis (WGCNA), least absolute shrinkage and selection operator (LASSO), support vector machine - recursive feature elimination (SVM-RFE), and single-sample gene set enrichment analysis (ssGSEA), culminating in the identification of six OROCGs. Furthermore, the study unveiled an augmented presence of myeloid-derived suppressor cells (MDSCs) and B cells in overweight-associated OA. The investigators formulated a diagnostic model encompassing pivotal genes related to DNA replication, chronic inflammation, and epigenetics, including CHTH18, CYSLTR2, HSF4, KDM6B, NR4A2, and UCKL1. The model's diagnostic precision was corroborated through receiver operating characteristic (ROC) curves and a nomogram applied to the test set and validation set GSE129147. This model efficaciously delineates the expression alterations and immune infiltration linked to overweight-related OA, thereby nominating these genes as prospective candidates for immunomodulatory therapeutic interventions.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2025.2510366\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2510366","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用了一种整合生物信息学和机器学习方法的协同方法来仔细检查与超重相关的骨关节炎特征基因(orocg)。研究小组从GEO数据库数据集GSE98918和GSE117999中获得了骨关节炎(OA)患者软骨和半月板的基因表达谱。通过差异基因表达(DEG)鉴定、加权基因共表达网络分析(WGCNA)、最小绝对收缩和选择算子(LASSO)、支持向量机递归特征消除(SVM-RFE)和单样本基因集富集分析(ssGSEA),对这些基因谱进行了细致的检查,最终鉴定出6个orocg。此外,该研究还揭示了骨髓源性抑制细胞(MDSCs)和B细胞在超重相关OA中的增强存在。研究人员制定了一个包含与DNA复制、慢性炎症和表观遗传学相关的关键基因的诊断模型,包括CHTH18、CYSLTR2、HSF4、KDM6B、NR4A2和UCKL1。通过受试者工作特征(ROC)曲线和应用于测试集和验证集GSE129147的nomogram来证实模型的诊断精度。该模型有效地描述了与超重相关的OA相关的表达改变和免疫浸润,从而将这些基因提名为免疫调节治疗干预的潜在候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the genetic characteristics of overweight-related osteoarthritis using machine learning.

This investigation employed a synergistic approach integrating bioinformatics and machine learning methodologies to scrutinize overweight-related osteoarthritis characteristic genes (OROCGs). The research team procured gene expression profiles from osteoarthritis (OA) patients' cartilage and meniscus, derived from GEO database datasets GSE98918 and GSE117999. These profiles underwent meticulous examination through differential gene expression (DEG) identification, weighted gene co-expression network analysis (WGCNA), least absolute shrinkage and selection operator (LASSO), support vector machine - recursive feature elimination (SVM-RFE), and single-sample gene set enrichment analysis (ssGSEA), culminating in the identification of six OROCGs. Furthermore, the study unveiled an augmented presence of myeloid-derived suppressor cells (MDSCs) and B cells in overweight-associated OA. The investigators formulated a diagnostic model encompassing pivotal genes related to DNA replication, chronic inflammation, and epigenetics, including CHTH18, CYSLTR2, HSF4, KDM6B, NR4A2, and UCKL1. The model's diagnostic precision was corroborated through receiver operating characteristic (ROC) curves and a nomogram applied to the test set and validation set GSE129147. This model efficaciously delineates the expression alterations and immune infiltration linked to overweight-related OA, thereby nominating these genes as prospective candidates for immunomodulatory therapeutic interventions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信